Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 21, 2020

The effect of nanoparticles on gas permeability with polyimide membranes and network hybrid membranes: a review

  • Chengyun Gao EMAIL logo , Jiayou Liao EMAIL logo , Jingqiong Lu , Jiwei Ma and Ehsan Kianfar ORCID logo EMAIL logo

Abstract

Polyimide membranes and network hybrid membranes exhibit high permeability despite good thermal and chemical stability, and high selectivity in gas mixture separation. In this study, the effect of nanoparticle distribution on the network polymer network, and changes in permeability, selectivity, and structure of the composite lattice membrane are investigated. According to the obtained permeability results, this increase in permeability was due to the increase of polymer network free volume and the formation of cavities in the nanoparticle-polymer interface. The significant results were that the permeability growth of gases with larger molecular size such as methane and nitrogen was higher than other gases. A comparison of the permeability growth of gases with the increasing volume fraction of nanoparticles confirms the dominance of the molecular sieve mechanism and the type of membrane transport mechanism change over polyimide and network Hybrid.


Corresponding authors: Chengyun Gao, College of Chemical and Biological Engineering, Taiyuan University of Science and Technology, Taiyuan, Shanxi, 030024, China, E-mail: ; Jiayou Liao, College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan, Shanxi, 030024, China, E-mail: ; and Ehsan Kianfar, Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran; and Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran, Iran, E-mail: ,

Award Identifier / Grant number: 21706169

Award Identifier / Grant number: 51603225

Award Identifier / Grant number: 201701D221067

Award Identifier / Grant number: 201801D121083

Funding source: Doctoral Scientific Research Foundation of Taiyuan University of Science and Technology

Award Identifier / Grant number: 20162020

Acknowledgments

National Natural Science Foundation of China (Grant No.21706169). Natural Science Foundation of Shanxi Province(Grant No.201701D221067). Doctoral Scientific Research Foundation of Taiyuan University of Science and Technology (Grant No. 20162020), National Natural Science Foundation of China (Grant No. 51603225) Natural Science Foundation of Shanxi Province (Grant No. 201801D121083). The authors gratefully a Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran and Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: The study was funded by National Natural Science Foundation of China (Grant No. 21706169); Natural Science Foundation of Shanxi Province (Grant No. 201701D221067); Doctoral Scientific Research Foundation of Taiyuan University of Science and Technology (Grant No. 20162020); National Natural Science Foundation of China (Grant No. 51603225). Natural Science Foundation of Shanxi Province(Grant No. 201801D121083). The authors gratefully a Department of Chemical Engineering, Arak Branch, Islamic Azad University, Arak, Iran and Young Researchers and Elite Club, Gachsaran Branch, Islamic Azad University, Gachsaran.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

Ahn, J.; Chung, W.-J.; Pinnau, I.; Guiver, M. D. Polysulfone/silica nanoparticle mixed-matrix membranes for gas separation. J. Membr. Sci.2008, 314, 123–133; https://doi.org/10.1016/j.memsci.2008.01.031.Search in Google Scholar

Andrady, A. L.; Merkel, T. C.; Toy, L. G. Effect of particle size on gas permeability of filled super glassy polymers. Macromolecules2004, 37, 4329–4331; https://doi.org/10.1021/ma049510u.Search in Google Scholar

Baker, R. W. Future Directions of Membrane Gas Separation Technology; Washington, DC: American Chemical Society, 2002.10.1021/ie0108088Search in Google Scholar

Baker, R. W. Membrane Technology and Applications; New York, NY: John Wiley & Sons, 2004.10.1002/0470020393Search in Google Scholar

Benny, D. Freeman, Novel Nanocomposite Membrane Structures for H2 Separations, Final Technical Progress Report; The University of Texas: Austin, 2005.10.2172/840808Search in Google Scholar

Carta, M.; Bezzu, C. G.; Vile, J.; Kariuki, B. M.; McKeown, N. B. Polymers of intrinsic-microporosity derived from a carbocyclic analogue of Tröger’s base. Polymers2017, 126, 324–349; https://doi.org/10.1016/j.polymer.2017.03.037.Search in Google Scholar

Chen, H.; Zhang, Q.; Luo, J.; Xu, Y.; Zhang, X. An enhanced bacterial foraging optimization and its application for training kernel extreme learning machine. Appl. Soft Comput.2020, 86, 105884; https://doi.org/10.1016/j.asoc.2019.105884.Search in Google Scholar

Chen, J. C.-Y. Evaluation of Polymeric Membranes for Gas Separation Processes: Poly(ether-b-amide) (PEBAXR2533) Block Copolymer. MSc Thesis, Waterloo Canada: Chemical Engineering, Ontario, 2002.Search in Google Scholar

Chung, T.-S.; Jiang, L. Y.; Li, Yi Mixed matrix membranes (MMMs) comprising organic polymers with dispersed inorganic fillers for gas separation. Prog. Polym. Sci.2007, 32, 483–507; https://doi.org/10.1016/j.progpolymsci.2007.01.008.Search in Google Scholar

Chung, S. Dual-Phase Inorganic Membrane for High-Temperature Carbon Dioxide Separation. Master of Science Thesis, Department of Chemical Engineering, University of Cincinnati, Cincinnati, 2004.Search in Google Scholar

Cornelius, C. J.; Marand, E. Hybrid silica-polyimide composite membranes: gas transport properties. J. Membr. Sci.2002, 202, 97–118; https://doi.org/10.1016/s0376-7388(01)00734-7.Search in Google Scholar

Ding, Y.; Hou, H.; Zhao, Y.; Zhu, Z.; Fong, H. Electrospun polyimide nano fibers and their applications. Prog. Polym. Sci.2016, 61, 67–103; https://doi.org/10.1016/j.progpolymsci.2016.06.006.Search in Google Scholar

Do, D. D. Adsorption Analysis: Equilibria and Kinetics Series on Chemical Engineering, Vol.2; London: Imperial College Press, 1998.10.1142/p111Search in Google Scholar

Fang, Q.; Zhuang, Z.; Gu, S.; Kaspar, R. B.; Zheng, J.; Wang, J.; Qiu, S.; Yan, Y. Designed synthesis of large-pore crystalline polyimide covalent organic frameworks. Nat. Commun.2014, 5, 4503; https://doi.org/10.1038/ncomms5503.Search in Google Scholar

Francisco, G. J.; Feng, X. Separation of Carbon Dioxide from Nitrogen Using Poly (vinyl alcohol)-Amine Blend Membranes. Ph.D. thesis, The University of Waterloo, Canada, 2006.Search in Google Scholar

Freeman, B. D. Basis of permeability/selectivity trade off relations in polymeric gas separation membranes. Macromolecules1999, 32, 375; https://doi.org/10.1021/ma9814548.Search in Google Scholar

Freeman, B. D. High-Temperature Nanocomposite Membrane for Hydrogen production for Fuel Cells; Texas: Texas Commission on Environmental Quality, 2006.Search in Google Scholar

Ghabussi, A.; Ashrafi, N.; Shavalipour, A.; Hosseinpour, A.; Habibi, M.; Moayedi, H.; Babaei, B.; Safarpour, H. Free vibration analysis of an electro-elastic GPLRC cylindrical shell surrounded by viscoelastic foundation using modified length-couple stress parameter. Mech. Base. Des. Struct. Mach.2019, 1–25; https://doi.org/10.1080/15397734.2019.1705166.Search in Google Scholar

Ghabussi, A.; Marnani, J. A.; Rohanimanesh, M. S. Improving seismic performance of portal frame structures with steel curved dampers. Structure2020, 24, 27–40; https://doi.org/10.1016/j.istruc.2019.12.025.Search in Google Scholar

Goda, E. S.; Yoon, K. R.; El-sayed, S. H.; Hong, S. E. Halloysite nanotubes as smart flame retardant and economic reinforcing materials: a review. Thermochim. Acta2018, 669, 173–184; https://doi.org/10.1016/j.tca.2018.09.017.Search in Google Scholar

Goda, E. S.; Gab-Allah, M. A.; Singu, B. S.; Yoon, K. R. Halloysite nanotubes based electrochemical sensors: a review. Microchem. J.2019, 147, 1083–1096; https://doi.org/10.1016/j.microc.2019.04.011.Search in Google Scholar

Hasegawa, M. Development of solution-processable, optically transparent polyimides with ultra-low linear coefficients of thermal expansion. Polymers2017, 9, 520; https://doi.org/10.3390/polym9100520.Search in Google Scholar

He, Z.; Pinnau, I.; Morisato, A. Nanostructured poly (4-methyl-2-pentyne)/silica hybrid membranes for gas separation. Desalination2002, 146, 11–I5; https://doi.org/10.1016/s0011-9164(02)00463-0.Search in Google Scholar

Hill, R. J. Diffusive permeability and selectivity of nanocomposite membranes. Ind. Eng. Chem. Res.2006, 45, 6890–6898; https://doi.org/10.1021/ie0512035.Search in Google Scholar

Hosseini, Y. Y.; Li, Y.; Chung, T.-S.; Liu, Y. Enhanced gas separation performance of nanocomposite membranes using MgO nanoparticles. J. Membr. Sci.2007, 302, 207–217; https://doi.org/10.1016/j.memsci.2007.06.062.Search in Google Scholar

Kesting, R. E. Polymeric Gas Separation Membrane; New York, NY: John Wiley & Sons, 1994.Search in Google Scholar

Kianfar, E.; Salimi, M. A review on the production of light Olefins from hydrocarbons cracking and methanol conversion. In Advances in Chemistry Research; Taylor, J. C., Ed., Vol. 59, Chapter: 1. Nova Science Publishers, Inc.: NY, USA 2019.Search in Google Scholar

Kianfar, E.; Ali, R. Zeolite catalyst based selective for the process MTG: a review. In Zeolites: Advances in Research and Applications, Mahler, A., Ed., Chapter: 8. Nova Science Publishers, Inc.: NY, USA 2020.Search in Google Scholar

Kianfar, E.; Mahler, A. Zeolites: properties, applications, modification and selectivity. In Zeolites: Advances in Research and Applications, Mahler, A., Ed., Chapter: 1. Nova Science Publishers, Inc.: NY, USA 2020.Search in Google Scholar

Kianfar, E; Pirouzfar, V; Sakhaeinia, H An experimental study on absorption/stripping CO2 using Mono-ethanol amine hollow fiber membrane contactor. J. Taiwan Inst. Chem. Eng.2017, 80, 954–962; https://doi.org/10.1016/j.jtice.2017.08.017.Search in Google Scholar

Kianfar, E.; Salimi, M.; Pirouzfar, V.; Koohestani, B. Synthesis and modification of zeolite ZSM-5 catalyst with solutions of calcium carbonate (CaCO3) and sodium carbonate (Na2CO3) for methanol to gasoline conversion. Int. J. Chem. React. Eng.2018a, 16, 1–7; https://doi.org/10.1515/ijcre-2017-0229.Search in Google Scholar

Kianfar, E.; Salimi, M.; Pirouzfar, V.; Koohestani, B. Synthesis of modified catalyst and stabilization of CuO/NH4-ZSM-5 for conversion of methanol to gasoline. Int. J. Appl. Ceram. Technol.2018b, 15, 734–741; https://doi.org/10.1111/ijac.12830.Search in Google Scholar

Kianfar, E.; Salimi, M.; Hajimirzaee, S.; Koohestani, B. Methanol to gasoline conversion over CuO/ZSM 5 catalyst synthesized using sonochemistry method. Int. J. Chem. React. Eng.2019a, 17, 1–10; https://doi.org/10.1515/ijcre-2018-0127.Search in Google Scholar

Kianfar, E.; Salimi, M.; Kianfar, F.; Kianfar, M.; Razavikia, S. A. H. CO2/N2 separation using polyvinyl chloride iso-phthalic acid/aluminium nitrate nanocomposite membrane. Macromol. Res.2019b, 27, 83–89; https://doi.org/10.1007/s13233-019-7009-4.Search in Google Scholar

Kianfar, E. Recent advances in synthesized, properties, applications of nano-zeolites. J. Sol. Gel Sci. Technol.2019a, 91, 415–429; https://doi.org/10.1007/s10971-019-05012-4.Search in Google Scholar

Kianfar, E. Comparison and assessment of zeolite catalysts performance dimethyl ether and light olefins production through methanol: a review. Rev. Inorg. Chem.2019b, 39, 157–177; https://doi.org/10.1515/revic-2019-0001.Search in Google Scholar

Kianfar, E. Ethylene to propylene over zeolite ZSM-5: improved catalyst performance by treatment with CuO. Russ. J. Appl. Chem.2019c, 92, 933−939; https://doi.org/10.1134/s1070427219070085.Search in Google Scholar

Kianfar, E. Ethylene to propylene conversion over Ni-W/ZSM-5 catalyst synthesize. Russ. J. Appl. Chem.2019d, 92, 1094–1101; https://doi.org/10.1134/s1070427219080068.Search in Google Scholar

Kianfar, E. Zeolite-based catalysts for methanol to gasoline process: a review. Microchem. J.2019e, 156, 104822; https://doi.org/10.1016/j.microc.2020.104822.Search in Google Scholar

Kianfara, E. Synthesis and characterization of AlPO4/ZSM-5 catalyst form ethanol conversion to dimethyl ether. Russ. J. Appl. Chem.2018, 91, 1710–1720; https://doi.org/10.1134/s1070427218100208.Search in Google Scholar

Klopfer, M. H.; Flaconnèche, B. Transport properties of gases in polymers. Oil Gas Sci. Technol.2001, 56, 245–259; https://doi.org/10.2516/ogst:2001022.10.2516/ogst:2001022Search in Google Scholar

Kluiters, S. C. A. Status review on membrane systems for hydrogen separation, Intermediate report EU project MIGREYD NNE5-2001-670 European Union, 2004.Search in Google Scholar

Kono, T.; Hu, Y.; Masuda, T.; Tanaka, K.; Priestley, R. D.; Freeman, B. D. Effect of fumed silica nanoparticles on the gas permeation properties of substituted polyacetylene membranes. Polym. Bull.2007, 58, 995–1003; https://doi.org/10.1007/s00289-006-0720-2.Search in Google Scholar

Koros, W. J.; Paul, D. R. Design considerations for measurement for gas sorption in polymers by pressure decay. J. Polym. Sci.1976, 14, 1903; https://doi.org/10.1002/pol.1976.180141014.Search in Google Scholar

Kosuri, M. R.; Koros, W. Polymeric Membranes for Super Critical Carbon Dioxide (scCO2) Separations. Ph.D. thesis, School of Chemical & Biomolecular Engineering, Georgia, 2009.Search in Google Scholar

Liaw, D. J.; Wang, K. L.; Huang, Y. C.; Lee, K. R.; Lai, J. Y.; Ha, C. S. Advanced polyimidematerials: syntheses, physical properties and applications. Prog. Polym. Sci.2012, 37, 907–74; https://doi.org/10.1016/j.progpolymsci.2012.02.005.Search in Google Scholar

Lin, W. H.; Vora, R. H.; Chung, T. S. Gas transport properties of 6FDA-durene/1,4-phenylenediamine (PDA) copolyimides. J. Polym. Sci., Part B: Polym. Phys.2000, 38, 2703; https://doi.org/10.1002/1099-0488(20001101)38:21%3c;2703::aid-polb10%3e;3.0.co;2-b.10.1002/1099-0488(20001101)38:21<2703::AID-POLB10>3.0.CO;2-BSearch in Google Scholar

Mahajan, R.; Koros, W. J. Factors controlling successful formation of mixed-matrix gas separation materials. Ind. Eng. Chem. Res.2000a, 39, 2692–2696; https://doi.org/10.1021/ie990799r.Search in Google Scholar

Mahajan, R.; Koros, W. J. Mixed matrix membrane materials with glassy polymers. Part 2. Polym. Sci. Eng.2002, 42, 1432–1441; https://doi.org/10.1002/pen.11042.Search in Google Scholar

Mahajan, R.; Burns, R.; Schaeffer, M.; Koros, W. J. Challenges in forming successful mixed matrix membranes with rigid polymeric materials. J. Appl. Polym. Sci.2002, 86, 881–890; https://doi.org/10.1002/app.10998.Search in Google Scholar

Mallakpour, S.; Rafiee, Z. Green and rapid preparation of thermally stable and highly organosoluble polyamides containing L-phenylalanine-9,10-dihydro-9,10-ethanoanthracene-11,12-dicarboximido moieties. Polym. Adv. Technol.2010, 21, 817–824; https://doi.org/10.1002/pat.1515.Search in Google Scholar

Merkel, T. C.; Freeman, B. D.; Spontak, R. J.; He, Z.; Pinnau, I.; Meakin, P.; Hill, A. J. Ultrapermeable, reverse-selective nanocomposite membranes. Science2002, 296, 519–522; https://doi.org/10.1126/science.1069580.Search in Google Scholar

Merkel, T. C.; He, Z.; Pinnau, I.; Freeman, B. D.; Meakin, P.; Hill, A. J. Effect of nanoparticles on gas sorption and transport in poly(1-trimethylsilyl-1-propyne). Macromolecules2003a, 36, 6844–6855; https://doi.org/10.1021/ma0341566.Search in Google Scholar

Merkel, T. C.; He, Z.; Pinnau, I.; Freeman, B. D.; Meakin, P.; Hill, A. J. Sorption and transport in poly(2,2-bis(trifluoromethyl)-4,5-difluoro-1,3-dioxole-co- tetrafluoroethylene) containing nanoscale fumed silica. Macromolecules2003b, 36, 8406–8414; https://doi.org/10.1021/ma034975q.Search in Google Scholar

Miller, G. Q.; Stocker, J. Selection of a Hydrogen Separation Process; Washington, DC: NPRA Annual, 2000.Search in Google Scholar

Moayedi, H.; Darabi, R.; Ghabussi, A.; Habibi, M.; Foong, L. K. Weld orientation effects on the formability of tailor welded thin steel sheets. Thin-Walled Struct.2020, 149, 106669; https://doi.org/10.1016/j.tws.2020.106669.Search in Google Scholar

Mohammadi, A. T. Permeation of Highly Selective Polyamide Membranes for Gas Separation Application. Ph.D. thesis, University of Ottawa, Ottawa, 1994.Search in Google Scholar

Moore, T. T.; Koros, W. J. Non-ideal effects in organic-inorganic materials for gas separation membranes. J. Mol. Struct.2005, 739, 87–98; https://doi.org/10.1016/j.molstruc.2004.05.043.Search in Google Scholar

Najaafi, N.; Jamali, M.; Habibi, M.; Sadeghi, S.; Jung, D. W.; Nabipour, N. Dynamic instability responses of the substructure living biological cells in the cytoplasm environment using stress-strain size-dependent theory. J. Biomol. Struct. Dyn.2020, 1–12; https://doi.org/10.1080/07391102.2020.1751297.Search in Google Scholar

Noble, R. D., Stern, S. A., Eds. Membrane Separations Technology: Principles and Applications; Elsevier: Oxford, 1995.Search in Google Scholar

Pandey, P.; Chauhan, R. S. Membranes for gas separation. Prog. Polym. Sci.2001, 26, 853; https://doi.org/10.1016/s0079-6700(01)00009-0.Search in Google Scholar

Perry, J. D.; Nagai, K.; Koros, W. J., Polymer membranes for hydrogen separations. MRS Bull.2006, 31, 745–749; https://doi.org/10.1557/mrs2006.187.Search in Google Scholar

Plaza-Lozano, D.; Comesãna-Gándara, B.; de la Viuda, M.; Seong, J. G.; Palacio, L.; Prádanos, P.; José, G.; Cuadrado, P.; Lee, Y. M.; Hernández, A.; Alvarez, C. New aromatic polyamides and polyimides having anadamantane bulky group. Mater. Today Commun.2015, 5, 23–31; https://doi.org/10.1016/j.mtcomm.2015.10.001.Search in Google Scholar

Pye, D. G.; Hoehn, H.; Park, M. Measurement of gas permeability of polymers. I. Permeabilities in constant volume/variable pressure apparatus. J. Appl. Polym. Sci.1976, 20, 1921–1931; https://doi.org/10.1002/app.1976.070200719.Search in Google Scholar

Robeson, L. M. Correlation of separation factor versus permeability for polymeric membranes. J. Member. Sci.1991, 62, 165; https://doi.org/10.1016/0376-7388(91)80060-j.Search in Google Scholar

Sadeghi, M.; Semsarzadeh, A. M.; Moadel, H. Enhancement of the gas separation properties of polybenzimidazole (PBI) membrane by incorporation of silica nanoparticles. J. Membr. Sci.2009, 331, 21–30; https://doi.org/10.1016/j.memsci.2008.12.073.Search in Google Scholar

Salimi, M.; Pirouzfar, V.; Kianfar, E. Enhanced gas transport properties in silica nanoparticles filler polystyrene nanocomposite membranes. Colloid Polym. Sci.2017a, 295, 215–226; https://doi.org/10.1007/s00396-016-3998-0.Search in Google Scholar

Salimi, M.; Pirouzfar, V.; Kianfar, E. Novel nanocomposite membranes prepared with PVC/ABS and silica nanoparticles for CH4/C2H6 separation. Polym. Sci.2017b, 59, 566–574; https://doi.org/10.1134/s0965545x17040071.Search in Google Scholar

Scott, T. M.; Benny, D. Freeman, Gas Transport Properties of Reverse Selective Nanocomposite Materials. Ph.D. thesis, University of Texas, Austin, 2007.Search in Google Scholar

Scott, M.; Kusuma, V. A.; Kelman, S. D.; Freeman, B. D. Gas transport properties of MgO filled poly(1-trimethylsilyl-1-propyne) nanocomposites. Polymer2008a, 49, 1659–1675; https://doi.org/10.1016/j.polymer.2008.01.004.Search in Google Scholar

Scott, M.; Kusuma, V. A.; Sanders, D.; Steve, S.; Freeman, B. D. Gas transport in TiO2 nanoparticle-filled poly (1-trimethylsilyl-1-propyne). J. Membr. Sci.2008b, 307, 196–217; https://doi.org/10.1016/j.memsci.2007.09.035.Search in Google Scholar

Scott, M.; Kusuma, V. A.; Steve, S.; Freeman, B. D. Gas permeability, solubility and diffusivity in 1,2-polybutadiene containing brookite nanoparticles. Polymer2008c, 49, 757–773; https://doi.org/10.1016/j.polymer.2007.12.011.Search in Google Scholar

Scott, M.; Raharjo, R. D.; Kusuma, V. A.; Steve, S.; Freeman, B. D. Gas permeability, solubility, and diffusion coefficients in 1,2-polybutadiene containing magnesium oxide. Macromolecules2008d, 41, 2144–2156; https://doi.org/10.1021/ma702459k.Search in Google Scholar

Scott, K. Handbook of Industrial Membranes, 1st ed.; Amsterdam: Elsevier science publisher ltd, 1995.Search in Google Scholar

Shao, L.; Low, B. T.; Chung, T.-S; Greenberg, A. R. Polymeric membranes for the hydrogen economy: contemporary approaches and prospects for the future. J. Membr. Sci.2008, 327, 18–31; https://doi.org/10.1016/j.memsci.2008.11.019.Search in Google Scholar

Shariati, A.; Ghabussi, A.; Habibi, M.; Safarpour, H.; Safarpour, M.; Tounsi, A.; Safa, M. Extremely large oscillation and nonlinear frequency of a multi-scale hybrid disk resting on nonlinear elastic foundation. Thin-Walled Struct.2020, 154, 106840; https://doi.org/10.1016/j.tws.2020.106840.Search in Google Scholar

Shen, L.; Chen, H.; Yu, Z.; Kang, W.; Zhang, B.; Li, H.; Yang, B.; Liu, D. Evolving support vector machines using fruit fly optimization for medical data classification. Knowl. Base Syst.2016, 96, 61–75; https://doi.org/10.1016/j.knosys.2016.01.002.Search in Google Scholar

Singh Dhingra, S. Mixed Gas Transport Study through Polymeric Membrane: A Novel Technique. Ph.D. thesis, Chemical Engineering, Virginia, 1997.Search in Google Scholar

Stern, S. A.; Gareis, P. J.; Sinclair, T. F.; Mohr, P. H. Performance of a versatile variable-volume measurements by the variable volume and variable-pressure methods permeability cell. Comparison of gas permeability. J. Appl. Polym. Sci.1963, 7, 2035–2051; https://doi.org/10.1002/app.1963.070070607.Search in Google Scholar

Takahashi, S.; Paul, D. R. Gas permeation in poly (ether imide) nanocomposite membranes based on surface-treated silica. Part 1: without chemical coupling to the matrix. Polymer2006, 47, 7519–7534; https://doi.org/10.1016/j.polymer.2006.08.029.Search in Google Scholar

Tantekin-Ersolmaz, S. B. Effect of zeolite particle size on the performance of polymer–zeolite mixed matrix membrane. J. Membr. Sci.2000, 175, 285–8; https://doi.org/10.1016/s0376-7388(00)00423-3.Search in Google Scholar

Wang, M.; Chen, H. Chaotic multi-swarm whale optimizer boosted support vector machine for medical diagnosis. Appl. Soft Comput.2020, 88, 105946; https://doi.org/10.1016/j.asoc.2019.105946.Search in Google Scholar

Wang, M.; Chen, H.; Yang, B.; Zhao, X.; Hu, L.; Cai, Z.; Huang, H.; Tong, C. Toward an optimal kernel extreme learning machine using a chaotic moth-flame optimization strategy with applications in medical diagnoses. Neurocomputing2017, 267, 69–84; https://doi.org/10.1016/j.neucom.2017.04.060.Search in Google Scholar

Whysall, M.; Ward Picioccio, K. Selection and Revamp of Hydrogen Purification Processes. In UOP LLC, Des Plaines, Illinois, Paper No. 37e, Prepared for presentation at the 1999 AIChE Spring Meeting, Houston, Texas, March 13-18, 1999.Search in Google Scholar

Winston, W. S.; Sirkar, K. K. Membrane Handbook, Part 2; London: Chapman Hall publication, 1992.Search in Google Scholar

Xu, X.; Chen, H.-L. Adaptive computational chemotaxis based on field in bacterial foraging optimization. Soft Comput.2014, 18, 797–807; https://doi.org/10.1007/s00500-013-1089-4.Search in Google Scholar

Xu, Y.; Chen, H.; Luo, J.; Zhang, Q.; Jiao, S.; Zhang, X. Enhanced moth-flame optimizer with mutation strategy for global optimization. Inf. Sci.2019, 492, 181–203; https://doi.org/10.1016/j.ins.2019.04.022.Search in Google Scholar

Yampolskii, Y.; Pinnau, I.; Freeman, B. Materials Science of Membranes for Gas and Vapor Separation; Chichester: John Wiley & Sons, 2006.10.1002/047002903XSearch in Google Scholar

Zhang, Y.; Balkus, J. K.Jr; Musselman, I. H.; Ferraris, J. P. Mixed-matrix membranes composed of Matrimid® and mesoporous ZSM-5 Nanoparticles. J. Membr. Sci.2008, 325, 28–39; https://doi.org/10.1016/j.memsci.2008.04.063.Search in Google Scholar

Zhang, X.; Shamsodin, M.; Wang, H.; Noormohammadi Arani, O.; Khan, A. Q.; Habibi, M.; Al-Furjan, M. S. H. Dynamic information of the time-dependent tobullian biomolecular structure using a high-accuracy size-dependent theory. J. Biomol. Struct. Dyn.2020, 1–16; https://doi.org/10.1080/07391102.2020.1760939.Search in Google Scholar PubMed

Zhao, X.; Li, D.; Yang, B.; Ma, C.; Zhu, Y.; Chen, H. Feature selection based on improved ant colony optimization for online detection of foreign fiber in cotton. Appl. Soft Comput.2014, 24, 585–596; https://doi.org/10.1016/j.asoc.2014.07.024.Search in Google Scholar

Zhao, X.; Zhang, X.; Cai, Z.; Tian, X.; Wang, X.; Huang, Y.; Chen, H.; Hu, L. Chaos enhanced grey wolf optimization wrapped ELM for diagnosis of paraquat-poisoned patients. Comput. Biol. Chem.2019, 78, 481–490; https://doi.org/10.1016/j.compbiolchem.2018.11.017.Search in Google Scholar PubMed

Received: 2020-04-07
Accepted: 2020-07-15
Published Online: 2020-08-21
Published in Print: 2021-03-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 23.4.2024 from https://www.degruyter.com/document/doi/10.1515/revic-2020-0007/html
Scroll to top button