Skip to main content
Log in

Species delimitation and phylogeography of African tree populations of the genus Parkia (Fabaceae)

  • Original Article
  • Published:
Tree Genetics & Genomes Aims and scope Submit manuscript

Abstract

In the pantropical mimosoid legume genus Parkia, taxonomic classification has remained controversial in Africa due to clinal phenotypic variations. Three species (P. biglobosa, P. bicolor, and P. filicoidea) are currently recognized, ranging from West to East Africa, with partially overlapping ranges across different floristic regions. However, additional taxa (species or varieties) have been suggested by different authors. To assess species boundaries of African Parkia and phylogeographic patterns within species, we genotyped 889 individuals using 10 microsatellite markers and compared our results with existing morphological descriptions. Bayesian genetic clustering confirmed the species boundaries assessed from morphological traits and did not reveal introgression but identified genetic discontinuities within each species. Six moderately differentiated genetic clusters were recovered in P. biglobosa (pairwise FST: 0.05–0.19), while P. bicolor and P. filicoidea, each, displayed four well-differentiated clusters (FST: 0.18–0.41 and 0.11–0.34, respectively). Within each species, genetic clusters occurred in parapatry. Parkia biglobosa clusters were congruent with the longitudinal clinal variation in leaflets sizes but 26% of individuals presented admixed genotypes. Genetic clusters in P. bicolor and P. filicoidea followed environmental gradients as well as phytogeographic subdivisions. They were also largely congruent with morphological discontinuities described in previous taxonomic studies and < 10% individuals showed admixed genotypes. We conclude that only one species (P. biglobosa) should be considered in the Guineo-Sudanian savanna. However, P. bicolor and P. filicoidea might each represent a complex of (sub)species. Thus, the hypotheses of cryptic species within P. bicolor and P. filicoidea should be further investigated by testing reproductive barriers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Allal F, Sanou H, Millet L, Vaillant A, Camus-Kulandaivelu L, Logossa ZA, Lefevre F, Bouvet JM (2011) Past climate changes explain the phylogeography of Vitellaria paradoxa over Africa. Heredity 107:174–186

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anhuf D, Ledru MP, Behling H, da Cruz FW Jr, Cordeiro RC, van der Hammen T, Karmann I, Marengo JA, de Oliveira PE, Pessenda L, Siffedine A, Albuquerque AL, da Silva Dias PL (2006)Paleo-environmental change in Amazonian and African rainforest during the LGM. Palaeogeogr Palaeoclimatol Palaeoecol 239:510–527

    Google Scholar 

  • Armitage SJ, Bristow CS, Drake NA (2015) West African monsoon dynamics inferred from abrupt fluctuations of Lake mega-Chad. Proc Natl Acad Sci 112:8543–8548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Assogbadjo AE, Kyndt T, Sinsin B, Gheysen G, Van Damme P (2006) Patterns of genetic and morphometric diversity in baobab (Adansonia digitata) populations across different climatic zones of Benin (West Africa). Ann Bot 97:819–830

    CAS  PubMed  PubMed Central  Google Scholar 

  • Assogbadjo AE, Glele Kakai R, Kyndt T, Sinsin B (2010) Conservation genetics of baobab (Adansonia digitata L.) in the parklands agroforestry systems of Benin (West Africa). Not Bot Hort Agrobot Cluj 38:136–140

    Google Scholar 

  • Aubreville A (1950) Flore Forestiere Soudano-Guineenne. Société d’Editions Geographiques, Maritimes et Coloniales, Paris

    Google Scholar 

  • Baker HG, Harris BJ (1957) The pollination of Parkia by bats and its attendant evolutionary problems. Evolution 11:449–460

    Google Scholar 

  • Benito-Garzón M, Leadley PW, Fernández-Manjarrés JF (2014) Assessing global biome exposure to climate change through the Holocene–Anthropocene transition. Glob Ecol Biogeogr 23:235–244

    Google Scholar 

  • Bentham G (1875) Revision of the suborder Mimoseæ. Transactions of the Linnean Society of London 30:335–664

    Google Scholar 

  • Bickford D, Lohman DJ, Sodhi NS, Ng PKL, Meier R, Winker K, Ingram KK, Das I (2007) Cryptic species as a window on diversity and conservation. Trends Ecol Evol 22:148–155

    PubMed  Google Scholar 

  • Birks HJB, Birks HH (2016) How have studies of ancient DNA from sediments contributed to the reconstruction of quaternary floras? New Phytol 209:499–506

    CAS  PubMed  Google Scholar 

  • Bonaccorso E, Koch I, Peterson AT (2006) Pleistocene fragmentation of Amazon species’ ranges. Diversity Distrib 12:157–164

    Google Scholar 

  • Bonnefille R (2007) Rain forest responses to past climate changes in tropical Africa. Tropical rain forest responses to climate change

  • Born C, Alvarez N, McKey D, Ossari S, Wickings EJ, Hossaert-McKey M, Chevallier MH (2011) Insights into the biogeographical history of the lower Guinea Forest domain: evidence for the role of refugia in the intraspecific differentiation of Aucoumea klaineana. Mol Ecol 20:131–142

    PubMed  Google Scholar 

  • Brenan JPM (1959) Leguminosae subfamily Mimosoideae. In: Milne-Redhead E (ed) Hubbard GE. Flora of Tropical East Africa. London, Crown Agents

    Google Scholar 

  • Brenan JPM (1970) Parkia. In: Flora Zambesiaca, 3(1). London: Crown Agents

  • Cappellini E, Gilbert MTP, Geuna F, Fiorentino G, Hall A, Thomas-Oates J, Ashton PD, Ashford DA, Arthur P, Campos PF, Kool J, Willerslev E, Collins MJ (2010) A multidisciplinary study of archaeological grape seeds. Naturwissenschaften 97:205–217

    CAS  PubMed  Google Scholar 

  • Chatrou LW, Pirie MD, Erkens RH et al (2012) A new subfamilial and tribal classification of the pantropical flowering plant family Annonaceae informed by molecular phylogenetics. Bot J Linn Soc 169:5–40

    Google Scholar 

  • Chevalier A (1910) Mission scientifique de l’Afrique occidentale française. Dahomey (1910). Les Parkia de l'Afrique occidentale. Bulletin du Museum national d’histoire naturelle 16:169–174

    Google Scholar 

  • Chiovenda E (1932) Flora Somala, vol 2. Sindacato Italiano Arti Grafiche, Roma

    Google Scholar 

  • Chybicki I (2017) INEST 2.2 [computer software]

  • Cohen AS, Stone JR, Beuning KR et al (2007) Ecological consequences of early Late Pleistocene megadroughts in tropical Africa. Proc Natl Acad Sci 104:16422–16427

    CAS  PubMed  PubMed Central  Google Scholar 

  • Contoux C, Jost A, Ramstein G, Sepulchre P, Krinner G, Schuster M (2013) Megalake Chad impact on climate and vegetation during the late Pliocene and the mid-Holocene. Clim Past 9:1417–1430

    Google Scholar 

  • Contribution of ontogenic and seminological studies to the morphological, taxonomical and phylogenic study of the genus Acacia (n.d.)

  • Cornuet JM, Luikart G (1996) Description and power analysis of two tests for detecting recent population bottlenecks from allele frequency data. Genetics 144:2001–2014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Couvreur TL, Chatrou LW, Sosef MS, Richardson JE (2008) Molecular phylogenetics reveal multiple tertiary vicariance origins of the African rain forest trees. BMC Biol 6. https://doi.org/10.1186/1741-7007-6-54

  • Couvreur TL, Porter-Morgan H, Wieringa JJ, Chatrou LW (2011a) Little ecological divergence associated with speciation in two African rain forest tree genera. BMC Evol Biol, 11: 296 http://www.biomedcentral.com/1471-2148/11/296

  • Couvreur TL, Pirie MD, Chatrou LW, Saunders RM, Su YC, Richardson JE, Erkens RH (2011b) Early evolutionary history of the flowering plant family Annonaceae: steady diversification and boreotropical geodispersal. J Biogeogr 38:664–680

    Google Scholar 

  • Couvreur TLP, Helmstetter AJ, Koenen EJM, Bethune K, Brandão RD, Little SA, Sauquet H, Erkens RHJ (2019) Phylogenomics of the Major Tropical Plant Family Annonaceae Using Targeted Enrichment of Nuclear Genes. Frontiers in Plant Science 9

  • Daïnou K, Mahy G, Duminil J, Dick CW, Doucet JL, Donkpégan ASL, Pluijgers M, Sinsin B, Lejeune P, Hardy OJ (2014) Speciation slowing down in widespread and long-living tree taxa: insights from the tropical timber tree genus Milicia (Moraceae). Heredity 113:74–85

    PubMed  PubMed Central  Google Scholar 

  • Daïnou K, Blanc-Jolivet C, Degen B, Kimani P, Ndiade-Bourobou D, Donkpegan ASL, Tosso F, Kaymak E, Bourland N, Doucet JL, Hardy OJ (2016) Revealing hidden species diversity in closely related species using nuclear SNPs, SSRs and DNA sequences–a case study in the tree genus Milicia. BMC Evolutionary Biology 16:259. https://doi.org/10.1186/s12862-016-0831-9

    Article  PubMed  PubMed Central  Google Scholar 

  • Daïnou K, Flot JF, Degen B, Blanc-Jolivet C, Doucet JL, Lassois L, Hardy OJ (2017) DNA taxonomy in the timber genus Milicia: evidence of unidirectional introgression in the West African contact zone. Tree Genetics & Genomes 13(4)

  • Dalibard M, Popescu SM, Maley J, Baudin F, Melinte-Dobrinescu MC, Pittet B, Marsset T, Dennielou B, Droz L, Suc JP (2014)High-resolution vegetation history of West Africa during the last 145 ka. Geobios 47:183–198

    Google Scholar 

  • Dauby G, Duminil J, Heuertz M, Hardy OJ (2010) Chloroplast DNA polymorphism and phylogeography of a Central African tree species widespread in mature rainforests: Greenwayodendron suaveolens (Annonaceae). Trop Plant Biol 3:4–13

    CAS  Google Scholar 

  • Dauby G, Duminil J, Heuertz M, Koffi GK, Stevart T, Hardy OJ (2014) Congruent phylogeographical patterns of eight tree species in Atlantic Central Africa provide insights into the past dynamics of forest cover. Mol Ecol 23:2299–2312

    CAS  PubMed  Google Scholar 

  • De Queiroz K (2007) Species Concepts and Species Delimitation. Systematic Biology 56(6):879–886

  • Debout GDG, Doucet JL, Hardy OJ (2011) Population history and gene dispersal inferred from spatial genetic structure of a Central African timber tree, Distemonanthus benthamianus (Caesalpinioideae). Heredity 106:88–99

    CAS  PubMed  Google Scholar 

  • Demenou BB, Piñeiro R, Hardy OJ (2016) Origin and history of the Dahomey gap separating west and Central African rain forests: insights from the phylogeography of the legume tree Distemonanthus benthamianus. J Biogeogr 43:1020–1031

    Google Scholar 

  • Donkpegan AS, Doucet JL, Migliore J et al (2017) Evolution in African tropical trees displaying ploidy-habitat association: the genus Afzelia (Leguminosae). Mol Phylogenet Evol 107:270–281

    PubMed  Google Scholar 

  • Donkpegan AS, Piñeiro R, Heuertz M, Duminil J, Daïnou K, Doucet J-L, Hardy OJ (2020) Population genomics of the widespread African savannah trees Afzelia africana and Afzelia quanzensis reveals no significant past fragmentation of their distribution ranges. In press

  • Droissart V, Dauby G, Hardy OJ, Deblauwe V, Harris DJ, Janssens S, Mackinder BA, Blach-Overgaard A, Sonké B, Sosef MSM, Stévart T, Svenning JC, Wieringa JJ, Couvreur TLP (2018) Beyond trees: biogeographical regionalization of tropical Africa. J Biogeogr 45:1153–1167

    Google Scholar 

  • Duminil J, Di Michele M (2009) Plant species delimitation: a comparison of morphological and molecular markers. Plant Biosystems 143:528–542

    Google Scholar 

  • Duminil J, Kenfack D, Viscosi V, Grumiau L, Hardy OJ (2012) Testing species delimitation in sympatric species complexes: the case of an African tropical tree, Carapa spp. (Meliaceae). Mol Phylogenet Evol 62:275–285

    PubMed  Google Scholar 

  • Duminil J, Brown RP, Ewédjè EEB, Mardulyn P, Doucet J-L, Hardy OJ (2013)Large-scale pattern of genetic differentiation within African rainforest trees: insights on the roles of ecological gradients and past climate changes on the evolution of Erythrophleum spp. (Fabaceae). BMC Evol Biol 13: 195. http://www.biomedcentral.com/1471-2148/13/195

  • Duminil J, Mona S, Mardulyn P, Doumenge C, Walmacq F, Doucet J-L, Hardy OJ (2015) Late Pleistocene molecular dating of past population fragmentation and demographic changes in African rain forest tree species supports the forest refuge hypothesis. J Biogeogr 42:1443–1454

    Google Scholar 

  • Dupont L (2011) Orbital scale vegetation change in Africa. Quat Sci Rev 30:3589–3602

    Google Scholar 

  • Dupont LM, Jahns S, Marret F, Ning S (2000) Vegetation change in equatorial West Africa: time-slices for the last 150 ka. Palaeogeogr Palaeoclimatol Palaeoecol 155:95–122

    Google Scholar 

  • Dupont LM, Donner B, Schneider R, Wefer G (2001)Mid-Pleistocene environmental change in tropical Africa began as early as 1.05 ma. Geology 29:195–198

    CAS  Google Scholar 

  • Earl DA (2012) STRUCTURE HARVESTER: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour 4:359–361

    Google Scholar 

  • Ewédjè EEBK, Jansen S, Koffi GK, Staquet A, Piñeiro R, Essaba RA, Obiang NLE, Daïnou K, Biwolé AB, Doucet JL, Hardy OJ (2020) Species delimitation in the African tree genus Lophira (Ochnaceae) reveals cryptic genetic variation. Conservation Genetics 21(3):501–514

  • Exell AW (1944) Catalogue of the vascular plants of S. Tomé. British Museum (Natural History), London

    Google Scholar 

  • Exell AW (1956) Supplement to the catalogue of the vascular plants of S. Tomé. British Museum (Natural History), London

    Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164:1567–1587

    CAS  PubMed  PubMed Central  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2007) Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes 7:574–578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Faye A, Deblauwe V, Mariac C, Richard D, Sonké B, Vigouroux Y, Couvreur TLP (2016) Phylogeography of the genus Podococcus (Palmae/Arecaceae) in Central African rain forests: Climate stability predicts unique genetic diversity. Molecular Phylogenetics and Evolution, 105:126–138

  • Fayolle A, Swaine MD, Bastin J-F(2014) Patterns of tree species composition across tropical African forests. J Biogeogr 41:2320–2331

    Google Scholar 

  • Frodin DG (2004) History and concepts of big plant genera. Taxon 53:753–776

    Google Scholar 

  • Garza JC, Williamson EG (2001) Detection of reduction in population size using data from microsatellite loci. Mol Ecol 10:305–318

    CAS  PubMed  Google Scholar 

  • Gilbert G, Boutique R (1952) Parkia. In: Flore du Congo Belge et Ruanda-Urundi 3: 141–145

  • Gillett JB (1965) Does Parkia occur in Ethiopia? Kew Bull 19:389–390

    Google Scholar 

  • Gomez C, Dussert S, Hamon P, Hamon S, de Kochko A, Poncet V (2009) Current genetic differentiation of Coffea canephora Pierre ex a. Froehn in the Guineo-Congolian African zone: cumulative impact of ancient climatic changes and recent human activities. BMC Evol Biol 9(1):167. https://doi.org/10.1186/1471-2148-9-167

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Grünmeier R (1990) Pollination by bats and non-flying mammals of the African tree Parkia bicolor (Mimosaceae). Memoirs of the New York Botanical Garden 55:83–104

    Google Scholar 

  • Hagos TH (1962) A revision of the genus Parkia R. Br. (Mim.) in Africa. Acta Botanica Neerlandica 11:231–265

    Google Scholar 

  • Hardy OJ (2003) Estimation of pairwise relatedness between individuals and characterization of isolation‐by‐distance processes using dominant genetic markers. Molecular Ecology 12(6):1577–1588

  • Hardy OJ, Vekemans X (2002) SPAGeDi: a versatile computer program to analyse spatial genetic structure at the individual or population levels. Mol Ecol Notes 2:618–620

    Google Scholar 

  • Hardy OJ, Born C, Budde K, Daïnou K, Dauby G, Duminil J, Ewédjé EEBK, Gomez C, Heuertz M, Koffi GK, Lowe AJ, Micheneau C, Ndiade-Bourobou D, Piñeiro R, Poncet V (2013) Comparative phylogeography of African rain forest trees: a review of genetic signatures of vegetation history in the Guineo-Congolian region. Compt Rendus Geosci 345:284–296

    Google Scholar 

  • Harms H (1911) Parkia zenkeri in Notizbl. Bot. Gart. Berlin, App. XXI, p.34

  • Hély C, Lézine AM, contributors A (2014) Holocene changes in African vegetation: tradeoff between climate and water availability. Clim Past 10:681–686

    Google Scholar 

  • Hopkins HCF (1983) The taxonomy, reproductive biology and economic potential of Parkia (Leguminosae: Mimosoideae) in Africa and Madagascar. Bot J Linn Soc 87:135–167

    Google Scholar 

  • Hopkins HCF (1986)Parkia (Leguminosae: Mimosoideae). Flora Neotropica 43: 1–123http://www.jstor.org/stable/4393790

  • Hopkins HCF (1992) Two new subspecies of Parkia (Leguminosae: Mimosoideae) in Malesia. Blumea-Biodiversity Evolution and Biogeography of Plants 37:77–79

    Google Scholar 

  • Hopkins HCF (2000a)Parkia paya (Leguminosae: Mimosoideae), a new species from swamp forest and notes on variation in Parkia speciosa sensu lato in Malesia. Kew Bull 55:123–132

    Google Scholar 

  • Hopkins HCF (2000b)Parkia lutea (Leguminosae, Mimosoideae), a new species from Amazonian Brazil. Adansonia 22:139–144

    Google Scholar 

  • Hopkins HCF, White F (1984) The ecology and chorology of Parkia in Africa. Bulletin du Jardin botanique national de Belgique/Bulletin van de Nationale Plantentuin van Belgie 54:235–266

    Google Scholar 

  • Hounkpèvi A, Azihou AF, Kouassi EK, Porembski S, Glele Kakaï R (2016)Climate-induced morphological variation of black plum (Vitex doniana Sw.) in Benin, West Africa. Genet Resour Crop Evol 63:1073–1084

    Google Scholar 

  • Ikabanga DU, Stevart T, Koffi KG et al (2017) Combining morphology and population genetic analysis uncover species delimitation in the widespread African tree genus Santiria (Burseraceae). Phytotaxa 321:166–180

    Google Scholar 

  • Ivory SJ, Lézine AM, Vincens A, Cohen AS (2018) Waxing and waning of forests: Late Quaternary biogeography of Southeast Africa. Glob Chang Biol 24:2939–2951

    PubMed  Google Scholar 

  • Jabbour F, Gaudeul M, Lambourdière J, Ramstein G, Hassanin A, Labat JN, Sarthou C (2018) Phylogeny, biogeography and character evolution in the tribe Desmodieae (Fabaceae: Papilionoideae), with special emphasis on the new Caledonian endemic genera. Mol Phylogenet Evol 118:108–121

    PubMed  Google Scholar 

  • Keay RWJ (1955) A new species of Parkia R. Br. (Leguminosae-Mimosaceae). Bulletin du Jardin Botanique de l'Etat à Bruxelles 55:209–212

    Google Scholar 

  • Keay RWJ (1958) Parkia. In Flora of west tropical Africa. Crown Agents for Oversea Governments and Administrations

  • Koffi KG, Heuertz M, Doumenge C, Onana JM, Gavory F, Hardy OJ (2010) A combined analysis of morphological traits, chloroplast and nuclear DNA sequences within Santiria trimera(Burseraceae) suggests several species following the biological species concept. Plant Ecology and Evolution 143:160–169

    Google Scholar 

  • Lassen KM, Kjær ED, Ouédraogo M, Nielsen LR (2014) Microsatellite primers for Parkia biglobosa (Fabaceae: Mimosoideae) reveal that a single plant sires all seeds per pod. Applications in Plant Sciences 2:6. https://doi.org/10.3732/apps.1400024

    Article  Google Scholar 

  • Lee MS, Palci A (2015) Morphological phylogenetics in the genomic age. Curr Biol 25:922–929

    Google Scholar 

  • Li YL, Liu JX (2018) StructureSelector: a web-based software to select and visualize the optimal number of clusters using multiple methods. Mol Ecol Resour 18:176–177

    PubMed  Google Scholar 

  • Linder HP, de Klerk HM, Born J, Burgess ND, Fjeldså J, Rahbek C (2012) The partitioning of Africa: statistically defined biogeographical regions in sub-Saharan Africa. J Biogeogr 39:1189–1205

    Google Scholar 

  • Lioubimtseva E, Simon B, Faure H, Faure-Denard L, Adams JM (1998) Impacts of climatic change on carbon storage in the Sahara–Gobi desert belt since the last glacial maximum. Glob Planet Chang 16:95–105

    Google Scholar 

  • Lissambou B-J, Couvreur TLP, Atteke C, Stévart T, Piñeiro R, Dauby G, Monthe FK, Ikabanga DU, Sonké B, M’batchi B, Hardy OJ (2018) Species delimitation in the genus based on morphological and genetic markers reveals new species. TAXON 68(3):442–454

  • Lompo D, Vinceti B, Konrad H, Gaisberger H, Geburek T (2018) Phylogeography of African locust bean (Parkia biglobosa) reveals genetic divergence and spatially structured populations in west and Central Africa. J Hered 109:811–824

    PubMed  PubMed Central  Google Scholar 

  • Luckow M, Hopkins HC (1995) A cladistic analysis of Parkia (Leguminosae: Mimosoideae). Am J Bot 82:1300–1320

    Google Scholar 

  • Macbride JF (1919) Notes on certain Leguminosae. Contributions from the Gray herbarium of harvard University new series 3(59):1–27

    Google Scholar 

  • Macherey-Nagel (2014) Genomic DNA from plant (user manual). www.mn-net.com

  • Maley J (1996) Le cadre paléoenvironnemental des refuges forestiers africains: quelques données et hypothèses. In: The biodiversity of African plants. Springer, Dordrecht, pp 519–535

    Google Scholar 

  • Maley J, Doumenge C, Giresse P, Mahé G, Philippon N, Hubau W, Lokonda MO, Tshibamba JM, Chepstow-Lusty A (2018) Late Holocene forest contraction and fragmentation in Central Africa. Quat Res 89:43–59

    Google Scholar 

  • Marchant R, Hooghiemstra H (2004) Rapid environmental change in African and south American tropics around 4000 years before present: a review. Earth Sci Rev 66:217–260

    Google Scholar 

  • Maslin BR, Miller JT, Seigler DS (2003) Overview of the generic status of Acacia (Leguminosae: Mimosoideae). Aust Syst Bot 16:1–18

    Google Scholar 

  • Meerts PJ, Hasson M (2016) Arbres et arbustes du Haut-Katanga

  • Miller CS, Gosling WD (2014) Quaternary forest associations in lowland tropical West Africa. Quat Sci Rev 84:7–25

    Google Scholar 

  • Monthe FK, Duminil J, Yakusu EK et al (2018) The African timber tree Entandrophragma congoense (Pierre ex De Wild.) A. Chev. is morphologically and genetically distinct from Entandrophragma angolense (Welw.) C. DC. Tree Genetics & Genomes 14:66. https://doi.org/10.1007/s11295-018-1277-6

    Article  Google Scholar 

  • Murphy DJ (2008) A review of the classification of Acacia (Leguminosae, Mimosoideae). Muelleria 26:10–26

    Google Scholar 

  • Murphy DJ, Brown GK, Miller JT, Ladiges PY (2010) Molecular phylogeny of Acacia Mill. (Mimosoideae: Leguminosae): evidence for major clades and informal classification. Taxon 59:7–19

    Google Scholar 

  • Neill DA (2009)Parkia nana (Leguminosae, Mimosoideae), a new species from the sub-Andean sandstone cordilleras of Peru. Novon: A Journal for Botanical Nomenclature 19:204–208

    Google Scholar 

  • Odee DW, Telford A, Wilson J, Gaye A, Cavers S (2012)Plio-Pleistocene history and phylogeography of Acacia senegal in dry woodlands and savannahs of sub-Saharan tropical Africa: evidence of early colonisation and recent range expansion. Heredity 109:372–382

    CAS  PubMed  PubMed Central  Google Scholar 

  • Oliver D (1871) Leguminosae: Mimosoideae. Flora of Tropical Africa, vol 2. L. Reeve & Co., London

    Google Scholar 

  • Padonou EA, Ahossou OD, Okou FO et al (2015) Impact of climate on seed morphology and plant growth of Caesalpinia bonduc L. in West Africa. International Journal of Agronomy and Agricultural Research 6:86–96

    Google Scholar 

  • Pedley L (1978) A revision of Acacia Mill. in Queensland. Austrobaileya 1:75–234

    Google Scholar 

  • Peery MZ, Kirby R, Reid BN et al (2012) Reliability of genetic bottleneck tests for detecting recent population declines. Mol Ecol 21:3403–3418

    PubMed  Google Scholar 

  • Piñeiro R, Dauby G, Kaymak E, Hardy OJ (2017) Pleistocene population expansions of shade-tolerant trees indicate fragmentation of the African rainforest during the ice ages. Proc R Soc B 284:20171800. https://doi.org/10.1098/rspb.2017.1800

    Article  PubMed  PubMed Central  Google Scholar 

  • Piry S, Luikart G, Cornuet JM (1999) BOTTLENECK: a computer program for detecting recent reductions in the effective population size using allele frequency data. J Hered 90:502–503

    Google Scholar 

  • Plana V (2004) Mechanisms and tempo of evolution in the African Guineo–Congolian rainforest. Philosophical Transactions of the Royal Society of London Series B Biological Sciences 359:1585–1594

    PubMed  PubMed Central  Google Scholar 

  • Ramos ACS, De Lemos-Filho JP, Ribeiro RA, Santos FR, Lovato MB (2007) Phylogeography of the tree Hymenaea stigonocarpa (Fabaceae: Caesalpinioideae) and the influence of quaternary climate changes in the Brazilian Cerrado. Ann Bot 100:1219–1228

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ramos ACS, De Lemos-Filho JP, Lovato MB (2009) Phylogeographical structure of the neotropical forest tree Hymenaea courbaril (Leguminosae: Caesalpinioideae) and its relationship with the vicariant Hymenaea stigonocarpa from Cerrado. J Hered 100:206–216

    CAS  PubMed  Google Scholar 

  • Rosell JA, Olson ME, Weeks A, de-Nova JA, Lemos RM, Camacho JP, Feria TP, Gómez-Bermejo R, Montero JC, Eguiarte LE (2010) Diversification in species complexes: tests of species origin and delimitation in the Bursera simaruba clade of tropical trees (Burseraceae). Mol Phylogenet Evol 57:798–811

    PubMed  Google Scholar 

  • Salzmann U, Hoelzmann P (2005) The Dahomey gap: an abrupt climatically induced rain forest fragmentation in West Africa during the late Holocene. The Holocene 15:190–199

    Google Scholar 

  • Sexton GJ, Frere CH, Kalinganire A, Uwamariya A, Lowe AJ, Godwin ID, Prentis PJ, Dieters MJ (2015) Influence of putative forest refugia and biogeographic barriers on the level and distribution of genetic variation in an African savannah tree, Khaya senegalensis (Desr.) A. Juss. Tree Genetics & Genomes 11(5)

  • Shanahan TM, McKay N, Overpeck JT, Peck JA, Scholz C, Heil CW Jr, King J (2013) Spatial and temporal variability in sedimentological and geochemical properties of sediments from an anoxic crater lake in West Africa: implications for paleoenvironmental reconstructions. Palaeogeogr Palaeoclimatol Palaeoecol 374:96–109

    Google Scholar 

  • Spencer R, Cross R (2020) Plant names: a guide to botanical nomenclature, 4th edn. CSIRO publishing

  • Suwannarat K, Nualsri C (2008) Genetic relationships between 4 Parkia spp. and variation in Parkia speciosa Hassk. Based on random amplified polymorphic DNA (RAPD) markers. Songklanakarin Journal of Science & Technology 30:433–440

    Google Scholar 

  • Terhorst J, Kamm JA, Song YS (2017) Robust and scalable inference of population history from hundreds of unphased whole genomes. Nat Genet 49:303–312

    CAS  PubMed  Google Scholar 

  • Tosso F, Hardy OJ, Doucet JL, Daïnou K, Kaymak E, Migliore J (2018) Evolution in the Amphi-Atlantic tropical genus Guibourtia (Fabaceae, Detarioideae), combining NGS phylogeny and morphology. Mol Phylogenet Evol 120:83–93

    PubMed  Google Scholar 

  • Vallé F, Dupont LM, Leroy SA, Schefuß E, Wefer G (2014) Pliocene environmental change in West Africa and the onset of strong NE trade winds (ODP sites 659 and 658). Palaeogeogr Palaeoclimatol Palaeoecol 414:403–414

    Google Scholar 

  • Vassal J (1972) Apport des recherches ontogeniques et seminologiques à l’etude morphologique, taxonomique et phylogenique de genre Acacia. Bull Soc Hist Natur Toulouse 108:125–247

    Google Scholar 

  • Wang J (2017) The computer program STRUCTURE for assigning individuals to populations: easy to use but easier to misuse. Mol Ecol Resour 17:981–990

    CAS  PubMed  Google Scholar 

  • White F (1983) The vegetation of Africa (Vol. 20). Unesco

  • Williamson-Natesan EG (2005) Comparison of methods for detecting bottlenecks from microsatellite loci. Conserv Genet 6:551–562

    Google Scholar 

Download references

Acknowledgments

Many thanks to Dr. Hopkins HCF for her important morphological works on African Parkia and her useful advices. We finally appreciate the very good understanding of this work by the Associate Editor (Dr Gugerli F) and the two Reviewers. We thank them for their useful comments and improvements to this paper.

Funding

This research was supported by the Fonds de la Recherche Scientifique (F.R.S.-FNRS) through a PhD fellowship (FRIA) attributed to ODA. The extensive field collection was partly supported by the International Foundation for Science (IFS) through the grant D/5656-1. Additional herbarium samples were provided by Meise Botanic Garden and Missouri Botanical Garden. Laboratory work was supported by the Belgian Science Policy Belspo (project AFRIFORD under the BRAIN program).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oscar D. Ahossou.

Ethics declarations

Data archiving statement

The microsatellite dataset is deposited in the TreeGenes database (https://treegenesdb.org).

Additional information

Communicated by F. Gugerli

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 205 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahossou, O.D., Daïnou, K., Janssens, S.B. et al. Species delimitation and phylogeography of African tree populations of the genus Parkia (Fabaceae). Tree Genetics & Genomes 16, 68 (2020). https://doi.org/10.1007/s11295-020-01463-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11295-020-01463-x

Keywords

Navigation