Skip to main content
Log in

Chimera states in Leaky Integrate-and-Fire dynamics with power law coupling

  • Regular Article
  • Published:
The European Physical Journal B Aims and scope Submit manuscript

Abstract

We investigate the robustness of chimera states under the influence of a nonlinear coupling in the form of a power law with exponent α. Taking as working example the Leaky Integrate-and-Fire model coupled in a 1D ring geometry, we show that the chimera states prevail for large values of the exponent α and small values of the coupling strength, while full synchronization is observed in the opposite ends. Our numerical results indicate that the coupling range R does not influence the frequency of oscillations in the coherent or in the incoherent domains. To the contrary, the R value affects the form of the chimera state: the size of the incoherent domains increase monotonically with R in expense of the size of the coherent ones. As an added value, our numerical results demonstrate that the frequency of oscillations decreases monotonically with the power exponent α. This feature can be useful in controlling the frequency of a network of oscillators by simply varying the nonlinearity exponent in the coupling, without modifying any of the other network attributes or parameters.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M.J. Panaggio, D. Abrams, Nonlinearity 28, R67 (2015)

    ADS  Google Scholar 

  2. E. Schöll, Eur. Phys. J. Special Topics 225, 891 (2016)

    ADS  Google Scholar 

  3. O.E. Omel’Chenko, Nonlinearity 31, R121 (2018)

    ADS  MathSciNet  Google Scholar 

  4. S. Majhi, B.K. Bera, D. Ghosh, M. Perc, Phys. Life Rev. 28, 100 (2019)

    ADS  Google Scholar 

  5. Y. Kuramoto, D. Battogtokh, Nonlinear Phenomena Complex Syst. 5, 380 (2002)

    Google Scholar 

  6. I. Omelchenko, O.E. Omel’chenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 110, 224101 (2013)

    ADS  Google Scholar 

  7. I. Omelchenko, A. Provata, J. Hizanidis, E. Schöll, P. Hövel, Phys. Rev. E 91, 022917 (2015)

    ADS  MathSciNet  Google Scholar 

  8. N.D. Tsigkri-DeSmedt, J. Hizanidis, P. Hövel, A. Provata, Eur. Phys. J. Special Topics 225, 1149 (2016)

    ADS  Google Scholar 

  9. B.K. Bera, S. Majhi, D. Ghosh, M. Perc, Europhys. Lett. 118, 10001 (2017)

    ADS  Google Scholar 

  10. Y. Kuramoto, Reduction methods applied to nonlocally coupled oscillator systems, inNonlinear Dynamics and Chaos: Where do we go from here?, edited by S.J. Hogan, A.R. Champneys, A.R. Krauskopf, M. di Bernado, R. Eddie Wilson, H.M. Osinga, M.E. Homer (CRC Press, Boca Raton, 2002), pp. 209–227

  11. D.M. Abrams, S.H. Strogatz, Phys. Rev. Lett. 93, 174102 (2004)

    ADS  Google Scholar 

  12. I. Omelchenko, Y. Maistrenko, P. Hövel, E. Schöll, Phys. Rev. Lett. 106, 234102 (2011)

    ADS  Google Scholar 

  13. N. Semenova, A. Zakharova, V. Anishchenko, E. Schöll, Phys. Rev. Lett. 117, 014102 (2016)

    ADS  Google Scholar 

  14. T. Isele, J. Hizanidis, A. Provata, P. Hövel, Phys. Rev. E 93, 022217 (2016)

    ADS  Google Scholar 

  15. S. Luccioli, A. Politi, Phys. Rev. Lett. 105, 158104 (2010)

    ADS  Google Scholar 

  16. S. Olmi, A. Politi, A. Torcini, Europhys. Lett. 92, 60007 (2010)

    ADS  Google Scholar 

  17. N.D. Tsigkri-DeSmedt, J. Hizanidis, E. Schöll, P. Hövel, A. Provata, Eur. Phys. J. B 90, 139 (2017)

    ADS  Google Scholar 

  18. J. Hizanidis, V. Kanas, A. Bezerianos, T. Bountis, Int. J. Bifurc. Chaos 24, 1450030 (2014)

    Google Scholar 

  19. J. Hizanidis, N.E. Kouvaris, G. Zamora-López, A. Díaz-Guilera, C.G. Antonopoulos, Sci. Rep. 6, 19845 (2016)

    ADS  Google Scholar 

  20. J. Hizanidis, E. Panagakou, I. Omelchenko, E. Schöll, P. Hövel, A. Provata, Phys. Rev. E 92, 012915 (2015)

    ADS  MathSciNet  Google Scholar 

  21. I. Omelchenko, A. Zakharova, P. Hövel, J. Siebert, E. Schöll, Chaos 25, 083104 (2015)

    ADS  MathSciNet  Google Scholar 

  22. I. Omelchenko, O. Omel’chenko, A. Zakharova, M. Wolfrum, E. Schöll, Phys. Rev. Lett. 116, 114101 (2016)

    ADS  Google Scholar 

  23. E.A. Martens, S. Thutupalli, A. Fourrière, O. Hallatschek, Proc. Natl. Acad. Sci. 110, 10563 (2013)

    ADS  Google Scholar 

  24. M.R. Tinsley, S. Nkomo, K. Showalter, Nat. Phys. 8, 662 (2012)

    Google Scholar 

  25. A.M. Hagerstrom, T.E. Murphy, R. Roy, P. Hövel, I. Omelchenko, E. Schöll, Nat. Phys. 8, 658 (2012)

    Google Scholar 

  26. N.C. Rattenborg, C.J. Amlaner, S.L. Lima, Neurosci. Biobehav. Rev. 24, 817 (2000)

    Google Scholar 

  27. N.C. Rattenborg, Naturwissenschaften 93, 413 (2006)

    ADS  Google Scholar 

  28. F. Mormann, K. Lehnertz, P. David, C.E. Elger, Physica D 144, 358 (2000)

    ADS  Google Scholar 

  29. F. Mormann, T. Kreuz, R.G. Andrzejak, P. David, K. Lehnertz, C.E. Elger, Epilepsy Res. 53, 173 (2003)

    Google Scholar 

  30. R.G. Andrzejak, C. Rummel, F. Mormann, K. Schindler, Sci. Rep. 6, 23000 (2016)

    ADS  Google Scholar 

  31. E. Fermi, J. Pasta, S. Ulam, Studies of nonlinear problems. Los Alamos National Laboratory Reports, Document LA–1940, 1955

  32. Y.V. Kartashov, B.A. Malomed, L. Torner, Rev. Mod. Phys. 83, 247 (2011)

    ADS  Google Scholar 

  33. H. Park, E.J. Powers, W.M. Grady, A. Arapostathis, Condition monitoring based on estimating complex coupling coefficients, inI2MTC2008-IEEE International Instrumentation and Measurement Technology Conference,2008, pp. 781–786

  34. G. Cantin, Int. J. Bifurc. Chaos 27, 1750213 (2017)

    MathSciNet  Google Scholar 

  35. A. Schmidt, T. Kasimatis, J. Hizanidis, A. Provata, P. Hövel, Phys. Rev. E 95, 032224 (2017)

    ADS  MathSciNet  Google Scholar 

  36. T. Kasimatis, J. Hizanidis, A. Provata, Phys. Rev. E 97, 052213 (2018)

    ADS  MathSciNet  Google Scholar 

  37. G. Argyropoulos, T. Kasimatis, A. Provata, Phys. Rev. E 99, 022208 (2019)

    ADS  Google Scholar 

  38. M.I. Bolotov, G.V. Osipov, A. Pikovsky, Phys. Rev. E 93, 032202 (2016)

    ADS  MathSciNet  Google Scholar 

  39. N. Brunel, M.C. van Rossum, Brain Res. Bull. 50, 303 (1999)

    Google Scholar 

  40. L.F. Abott, Biol. Cybern. 97, 337 (2007)

    Google Scholar 

  41. NVidia, 2020. CUDA Web Site, https://developer.nvidia.com/cuda-zone (accessed May 7, 2020)

  42. P. Jaros, Y. Maistrenko, T. Kapitaniak, Phys. Rev. E 91, 022907 (2015)

    ADS  Google Scholar 

  43. V. Semenov, A. Zakharova, Y. Maistrenko, E. Schöll, Europhys. Lett. 115, 10005 (2016)

    ADS  Google Scholar 

  44. N.D. Tsigkri-DeSmedt, I. Koulierakis, G. Karakos, A. Provata, Eur. Phys. J. B 91, 305 (2018)

    ADS  Google Scholar 

  45. E. Rybalova, V.S. Anishchenko, G.I. Strelkova, A. Zakharova, Chaos 29, 071106 (2019)

    ADS  MathSciNet  Google Scholar 

  46. Z. Faghani, Z. Arab, F. Parastesh, S. Jafari, M. Perc, M. Slavinec, Chaos Solitons Fractals 114, 306 (2018)

    ADS  MathSciNet  Google Scholar 

  47. I. Shepelev, T. Vadivasova, Commun. Nonlinear Sci. Numer. Simul. 79, 104925 (2019)

    MathSciNet  Google Scholar 

  48. A. Provata, J. Phys. Complex. 1, 025006 (2020)

    ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Astero Provata.

Additional information

Publisher’s Note

The EPJ Publishers remain neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Provata, A., Venetis, I.E. Chimera states in Leaky Integrate-and-Fire dynamics with power law coupling. Eur. Phys. J. B 93, 160 (2020). https://doi.org/10.1140/epjb/e2020-10252-9

Download citation

  • Received:

  • Revised:

  • Published:

  • DOI: https://doi.org/10.1140/epjb/e2020-10252-9

Keywords

Navigation