Skip to main content

Advertisement

Log in

Molecular Identification and In Vitro Plant Growth-Promoting Activities of Culturable Potato (Solanum tuberosum L.) Rhizobacteria in Tanzania

  • Published:
Potato Research Aims and scope Submit manuscript

Abstract

The present study investigated the diversity of culturable rhizobacteria associated with potato (S. tuberosum L.) in Tanzania and assessed their in vitro plant growth-promoting (PGP) activities to deduce their potential as biofertilizers. Potato rhizosphere soil and tuber samples (54 samples in total) were collected from 9 villages in three different agro-ecological regions in Tanzania. A total of 145 rhizobacterial isolates were obtained, 52 of which were selected and identified by partial 16S rRNA gene sequences and screened for various PGP traits in vitro including qualitative and quantitative solubilization of phosphorus (P), zinc (Zn) and potassium (K), nitrogen (N2) fixation and production of ammonia (NH3) in nitrogen-free medium, and indole-3-acetic acid (IAA), gibberellic acids (GA) and siderophores production. The results showed that the isolates were all Gammaproteobacteria, belonging to 4 families (Enterobacteriaceae, Yersiniaceae, Pseudomonadaceae and Morganellaceae) and 9 genera (Enterobacter, Klebsiella, Serratia, Pseudomonas, Morganella, Buttiauxella, Pantoea and Cedecea). Significant differences (P < 0.05) were observed for all assessed PGP abilities of the external and endophytic rhizobacterial isolates except for quantitative siderophore production and qualitative P and K solubilization for the external rhizobacteria and production of IAA and GA for the endophytic rhizobacteria. Among the best PGP isolates which can be exploited for biofertilization of the potato were Klebsiella pneumoniae KIBS1, K. grimontii LUTS10, Serratia liquefaciens KIBT1, Enterobacter ludwigii KIBS10 and Citrobacter freundii MWALS6. Comparative evaluation of PGP abilities of these two groups of isolates revealed significant differences (P < 0.05) only for NH3 and IAA production and qualitative K solubilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Ahemad M, Khan MS (2012) Effect of fungicides on plant growth promoting activities of phosphate solubilizing Pseudomonas putida isolated from mustard (Brassica compestris) rhizosphere. Chemosphere 86:945–950

    CAS  PubMed  Google Scholar 

  • Ahemad M, Kibret M (2014) Mechanisms and applications of plant growth promoting rhizobacteria: current perspective. J King Saud Univ-Sci 26:1–20. https://doi.org/10.1016/j.jksus.2013.05.001

    Article  Google Scholar 

  • Akerman B (1999) Affinity gel electrophoresis of DNA. J Am Chem Soc 121:7292–7301

    Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition, 2nd edn. International Zinc Association (IZA) and International Fertilizer Industry Association (IFA), Brussels, Belgium and Paris, Paris

    Google Scholar 

  • Aloo BN, Mbega ER, Makumba BA (2019a) Rhizobacteria-based technology for sustainable cropping of potato (Solanum tuberosum L.). Potato Res 1–21. doi: https://doi.org/10.1007/s11540-019-09432-1

  • Aloo BN, Makumba BA, Mbega ER (2019b) The potential of bacilli rhizobacteria for sustainable crop production and environmental sustainability. Microbiol Res 219:26–39. https://doi.org/10.1016/j.micres.2018.10.011

    Article  CAS  PubMed  Google Scholar 

  • Amar JD, Kumar M, Kumar R (2013) Plant growth promoting rhizobacteria (PGPR): an alternative of chemical fertilizer for sustainable, environment friendly agriculture. Res J Agric For 1:21–23

    Google Scholar 

  • Aravind R, Kumar A, Eapen SJ, Ramana K (2009) Endophytic bacterial flora in root and stem tissues of black pepper (Piper nigrum L.) genotype: isolation, identification and evaluation against Phytophthora capsici. Lett Appl Microbiol 48:58–64

    CAS  PubMed  Google Scholar 

  • Ardakani SS, Heydari A, Tayebi L (2010) Promotion of cotton seedlings growth characteristics by development and use of new bioformulations. Int J Bot 6:95–100

    Google Scholar 

  • Arora NK, Verma M, Mishra J (2017) Rhizobial bioformulations: past, present and future. In: Mehnaz S (ed) Rhizotrophs: plant growth promotion to bioremediation, microorganisms for sustainability, 2nd edn. Springer Nature, Singapore, pp 69–99

    Google Scholar 

  • Awais M, Tariq M, Ali Q, Khan A, Ali A, Nasir IA, Husnain T (2019) Isolation, characterization and association among phosphate solubilizing bacteria from sugarcane rhizosphere. Cytol Genet 53:86–95. https://doi.org/10.3103/S0095452719010031

    Article  Google Scholar 

  • Batista BD (2012) Promoção De Crescimento Em Milho (Zea mays L.) Por rizobactérias associadas à cultura do guaranazeiro (Paullinia cupana var. sorbilis). Dissertation, University of Sao Paulo

  • Batista BD, Lacava T, Ferrari A, Teixeira-Silvia NS, Boantelli ML, Tsui S, Mondin M, Kitajima EW, Pereira JO, Azevedo JL, Quecine MC (2018) Screening of tropically derived, multi-trait plant growth promoting rhizobacteria and evaluation of corn and soybean colonization ability. Microbiol Res 206:33–42

    PubMed  Google Scholar 

  • Behera BC, Yadav H, Singh SK, Mishra RR, Sethi BK, Dutta SK, Thatoi HN (2017) Phosphate solubilization and acid phosphatase activity of Serratia sp. isolated from mangrove soil of Mahanadi river delta, Odisha, India. J Genet Eng Biotechnol 15:169–178. https://doi.org/10.1016/j.jgeb.2017.01.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Berg G, Krechel A, Ditz M, Sikora RA, Ulrich A, Hallman J (2005) Endophytic and ectophytic potato-associated bacterial communities differ in structure and antagonistic function against plant pathogenic fungi. FEMS Microbiol Ecol 51:215–229

    CAS  PubMed  Google Scholar 

  • Bharadwaj G, Shah R, Joshi B, Patel P (2017) Klebsiella pneumoniae VRE36 as a PGPR isolated from Saccharum officinarum cultivar Co 99004. J Appl Biol Biotechnol 5:47–52

    Google Scholar 

  • Biswas JK, Banerjee A, Rai M, Naidu R, Biswas B, Vilthanaje M, Dash MC, Sarkar SK, Meers E (2018) Potential application of selected metal resistant phosphate solubilizing bacteria isolated from the gut of earthworm (Metaphire posthuma) in plant growth promotion. Geoderma 330:117–124

    CAS  Google Scholar 

  • Cassán F, Vanderleyden J, Spaepen S (2014) Physiological and agronomical aspects of phytohormone production by model plant-growth-promoting Rhizobacteria (PGPR) belonging to the genus Azospirillum. J Plant Growth Regul 33:440–459. https://doi.org/10.1007/s00344-013-9362-4

    Article  CAS  Google Scholar 

  • Castanheira NL, Dourado AC, Pais I, Samedo J, Scotti-Campos P, Borges N, Fareleira P (2017) Colonization and beneficial effects on annual ryegrass by mixed inoculation with plant growth promoting bacteria. Microbiol Res 198:47–55

    PubMed  Google Scholar 

  • Chakraborty U, Chakraborty BN, Chakraborty AP, Sunar K, Dey PL (2013) Plant growth promoting rhizobacteria mediated improvement of health status of tea plants. Indian J Biotechnol 12:20–31

    CAS  Google Scholar 

  • Compant S, Clement C, Sessitsch A (2010) Plant growth-promoting bacteria in the rhizo and endosphere of plants their role, organization, mechanisms involved and prospects for utilization. Soil Biol Biochem 42:669–678

    CAS  Google Scholar 

  • Das S, Mishra J, Das SK, Pandey S, Rao DS, Chakraborty A, Sudarshan M, Das N, Thatoi H (2014) Investigation on mechanism of Cr(VI) reduction and removal by Bacillus amyloliquefaciens, a novel chromate tolerant bacterium isolated from chromite mine soil. Chemosphere 96:112–121. https://doi.org/10.1016/j.chemosphere.2013.08.080

    Article  CAS  PubMed  Google Scholar 

  • Defez R, Andreozzi A, Bianco C (2017) The overproduction of Indole-3-acetic acid (IAA) in endophytes upregulates nitrogen fixation in both bacterial cultures and inoculated rice plants. Microb Ecol 74:441–452

    CAS  PubMed  Google Scholar 

  • Dhir B (2017) Biofertilizers and biopesticides: eco-friendly biological agents. In: Kumar R, Sharma AK, Ahluwalia SS (eds) Advances in environmental biotechnology. Springer, Singapore, pp 167–188

    Google Scholar 

  • Duan YQ, Zhou XK, Din-Yan L, Li QQ, Dang LZ, Zhang YG, Qiu LH, Nimaichand S, Li WJ (2015) Enterobacter tabaci sp. nov., a novel member of the genus Enterobacter isolated from a tobacco stem. Antonie Van Leeuwenhoek 108:1161–1169. https://doi.org/10.1007/s10482-015-0569-1

    Article  CAS  PubMed  Google Scholar 

  • Edi-Premona M, Moawad MA, Vlek PLG (1996) Effect of phosphate- solubilizing Pseudomonas putida on growth of maize and its survival in the rhizosphere. Indones J Crop Sci 11:13–23

    Google Scholar 

  • Elbeltagy A, Nishioka K, Suzuki H, Sato T, Sato YI, Morisaki H, Mitsui H, Minamisawa K (2000) Isolation and characterization of endophytic bacteria from wild and traditionally cultivated rice varieties. Soil Sci Plant Nutr 46:617–629

    Google Scholar 

  • FAO (2008) International year of the potato: new light on a hidden treasure. Food and Agriculture Organization of the United Nations, Rome

    Google Scholar 

  • Fasim F, Ahmed N, Parsons R, Gadd GM (2002) Solubilization of zinc salts by a bacterium isolated from the air environment of a tannery. FEMS Microbiol Lett 213:1–6

    CAS  PubMed  Google Scholar 

  • Frendrihan S (2014) Isolation of some endophytic bacterial strains from potato tubers. Romanian J Plant Prot 7:52–55

    Google Scholar 

  • Gandhi A, Muralidharan G (2016) Assessment of zinc solubilizing potentiality of Acinetobacter sp. isolated from rice rhizosphere. Eur J Soil Biol 76:1–8

    CAS  Google Scholar 

  • George H, Ed H (2011) A summary of N, P, and K research with tomato in Florida. The Institute of Food and Agricultural Sciences, University of Florida, Gainesville, Florida

  • George P, Gupta AD, Gopal M, Thomas L, Thomas GV (2013) Multifarious beneficial traits and plant growth promoting potential of Serratia marcescens KiSII and Enterobacter sp. RNF 267 isolated from the rhizosphere of coconut palms (Cocos nucifera L.). World J Microbiol Biotechnol 29:109–117. https://doi.org/10.1007/s11274-012-1163-6

    Article  CAS  PubMed  Google Scholar 

  • Ghavami N, Alikhani HA, Pourbabei AA, Besharati H (2017) Effects of two new siderophore-producing rhizobacteria on growth and iron content of maize and canola plants. J Plant Nutr 40:736–746. https://doi.org/10.1080/01904167.2016.1262409

    Article  CAS  Google Scholar 

  • Ghyselinck J, Velivelli SL, Heylen K, O’Herlihy E, Franco J, Rojas M (2013) Bioprospecting in potato fields in the Central Andean Highlands: screening of rhizobacteria for plant growth-promoting properties. Syst Appl Microbiol 36:116–127

    CAS  PubMed  Google Scholar 

  • Goswami D, Dhandhukia PC, Patel P, Thakker JN (2014) Screening of PGPR from saline desert of Kutch: growth promotion in Arachis hypogea by Bacillus licheniformis A2. Microbiol Res 169:66–75. https://doi.org/10.1016/j.micres.2013.07.004

    Article  CAS  PubMed  Google Scholar 

  • Gouda S, Kerry RG, Das G, Paramithiotis S, Patra JK (2018) Revitalization of plant growth promoting rhizobacteria for sustainable development in agriculture. Microbiol Res 206:131–140

    PubMed  Google Scholar 

  • Govindasamy V, Senthilkumar M, Annapurna K (2014) Effect of mustard Rhizobacteria on wheat growth promotion under cadmium stress: characterization of acdS gene coding ACC deaminase. Ann Microbiol 65:1679–1687. https://doi.org/10.1007/s13213-014-1007-8

    Article  CAS  Google Scholar 

  • Gupta G, Panwar J, Akhtar MS, Jha PN (2012) Endophytic nitrogen-fixing bacteria as biofertiliser. In: Lichfousse E (ed) Sustainable agriculture reviews. Springer, Dordrecht, pp 183–221

    Google Scholar 

  • Hacquard S, Garrido-Oter R, Gonzalez A, Spaepen S, Ackermann G, Lebeis S, McHardy AC, Dangl JL, Knight R, Ley R (2015) Microbiota and host nutrition across plant and animal kingdoms. Cell Host Microbe 17:603–616. https://doi.org/10.1016/j.chom.2015.04.009

    Article  CAS  PubMed  Google Scholar 

  • Hanif MK, Hameed S, Imram A, Naqqash T, Shahid M, Van Elsas (2015) Isolation and characterization of a β-propeller gene containing phosphobacterium Bacillus subtilis strain KPS-11 for growth promotion of potato (Solanum tuberosum L.). Front Microbiol 6:583. doi: https://doi.org/10.3389/fmicb.2015.00583

  • Hayat R, Ali S, Khalid R, Ahmed I (2010) Soil beneficial bacteria and their role in plant growth promotion: a review. Ann Microbiol 60:579–598. https://doi.org/10.1007/s13213-010-0117-1

    Article  Google Scholar 

  • Holbrook AA, Edge WLW, Bailey F (1961) Spectrophotometric method for determination of gibberellic acid in gibberellins. ACS, USA

    Google Scholar 

  • Hungria M, Nogueira MA, Araujo RS (2013) Co-inoculation of soybeans and common beans with rhizobia and azospirilla: strategies to improve sustainability. Biol Fertil Soils 49:991–801

    Google Scholar 

  • Hussain A, Arshad M, Zahir ZA, Asghar M (2015) Prospects of zinc solubilizing bacteria for enhancing growth of maize. Pak J Agric Sci 52:915–922

    Google Scholar 

  • Jadoon S, Afzal A, Asad SA, Sultan T, Tabassum B, Umer M, Asif M (2019) Plant growth promoting traits of rhizobacteria isolated from potato (Solanum tuberosum L.) and their antifungal activity against Fusarium oxysporum. J Anima Plant Sci 29:1026–1036

    CAS  Google Scholar 

  • Jaiswal SK, Msimbira LA, Dakora FD (2017) Phylogenetically diverse group of native bacterial symbionts isolated from root nodules of groundnut (Arachis hypogaea L.) in South Africa. Syst Appl Microbiol 40:215–226. https://doi.org/10.1016/j.syapm.2017.02.002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jha PN, Gupta G, Jha P, Mehrota R (2013) Association of rhizospheric/endophytic bacteria with plants: a potential gateway to sustainable agriculture. Greener J Agric Sci 3:73–84

    Google Scholar 

  • Joseph B, Patra RR, Lawrence R (2007) Characterization of plant growth promoting rhizobacteria with chickpea (Cicer arietinum L.). Int J Plant Prod 1:141–152. doi: https://doi.org/10.22069/ijpp.2012.532

  • Keino L, Baijukya F, Ngetich W, Otinga AN, Okalebo JR, Njoroge R, Mukalama J (2015) Nutrients limiting soybean (glycine max l) growth in acrisols and ferralsols of Western Kenya. PLoS One 10:1–20

    Google Scholar 

  • Krey T, Vassilev N, Baum C, Eichler-Lobermann B (2013) Effects of long-term phosphorus application and plant-growth promoting Rhizobacteria on maize phosphorus nutrition under field conditions. Eur J Soil Biol 55:124–130. https://doi.org/10.1016/j.ejsobi.2012.12.007

    Article  CAS  Google Scholar 

  • Kuan KB, Othman R, Rahim KA, Shamsuddin ZH (2016) Plant growth-promoting rhizobacteria inoculation to enhance vegetative growth, nitrogen fixation and nitrogen remobilization of maize under greenhouse conditions. PLoS One 11:1–19

    Google Scholar 

  • Kuhad RC, Gupta R, Sing A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:1–10. https://doi.org/10.4061/2011/280696

    Article  CAS  Google Scholar 

  • Kumar A, Maurya BR, Raghuwanshi R (2014) Isolation and characterization of PGPR and their effect on growth, yield and nutrient content in wheat (Triticum aestivum L.). Biocatal Agric Biotechnol 3:121–128

    Google Scholar 

  • Kumar A, Patel JS, Meena VS (2018a) Rhizospheric microbes for sustainable agriculture: an overview. In: Meena V (ed) Role of rhizospheric microbes in soil. Springer Nature, Singapore, pp 1–31

    Google Scholar 

  • Kumar P, Dubey RC (2012) Plant growth promoting rhizobacteria for biocontrol of phytopathogens and yield enhancement of Phaseolus vulgaris. J Curr Perspect Appl Microbiol 1:6–38

    Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018b) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leache A (2013) Phylogenetic trees made easy: a how-to manual by Barry G. Hall. Q Rev Biol 88:47–48

    Google Scholar 

  • Loaces I, Ferrando L, Scavino AF (2011) Dynamics, diversity and function of endophytic siderophore-producing bacteria in rice. Microb Ecol 61:606–618

    PubMed  Google Scholar 

  • MacLean D, Jones JDG, Studholme DJ (2009) Application of “next-generation” sequencing technologies to microbial genetics. Nat Rev Microbiol 7:287–296. https://doi.org/10.1038/nrmicro2088

    Article  PubMed  Google Scholar 

  • Marques APGC, Pires CA, Moreira H, Rangel AOSS, Castro PMI (2010) Assessment of the plant growth promotion abilities of six bacterial isolates using Zea mays as indicator plant. Soil Biol Biochem 42:1229–1235

    CAS  Google Scholar 

  • Mazumdar D, Saha SP, Gosh S (2018) Klebsiella pneumoniae rs26 as a potent PGPR isolated from chickpea (Cicer arietinum) rhizosphere. Pharma Innov J 7:56–62

    CAS  Google Scholar 

  • Mende DH, Kayunze KA, Mwatawala M (2015) Impact of round potato production on household food security in the southern highlands of Tanzania. Food Sci Qual Manag 37:1–9

    Google Scholar 

  • Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA (2018) The chemistry of plant–microbe interactions in the rhizosphere and the potential for metabolomics to reveal signaling related to defense priming and induced systemic resistance. Front Plant Sci 9:112. https://doi.org/10.3389/fpls.2018.00112

    Article  PubMed  PubMed Central  Google Scholar 

  • Ministry of Agriculture and Food Security (2012) Accelerated food security project. Dar es Salaam - Tanzania

    Google Scholar 

  • Mishra DJ, Mishra UK, Shahi SK (2013) Role of bio-fertilizer inorganic agriculture: a review. Res J Recent Sci 2:39–41

    CAS  Google Scholar 

  • Mitter B, Pfaffenbichler N, Sessitsch A (2016) Plant–microbe partnerships in 2020. Microb Biotechnol 9:635–640

    PubMed  PubMed Central  Google Scholar 

  • Mohammed TA, Mervat AH, Hanan HN, Gehan HY, Mohamed M (2013) Bio-preparates support the productivity of potato plants grown under desert farming conditions of north Sinai: five years of field trials. J Adv Res 5:41–48

    Google Scholar 

  • Naqqash T, Hameed S, Imram A, Hanif MK, Majeed A, Van Elsas JD (2016) Differential response of potato toward inoculation with taxonomically diverse plant growth promoting rhizobacteria. Front Plant Sci 7:144. https://doi.org/10.3389/fpls.2016.00144

    Article  PubMed  PubMed Central  Google Scholar 

  • Nassal D, Spohn M, Eltbany N, Jacquiod S, Smalla K, Marhan S, Kandeler E (2018) Effects of phosphorus-mobilizing bacteria on tomato growth and soil microbial activity. Plant Soil 427:17–37

    CAS  Google Scholar 

  • Nei M, Kumar S (2000) Molecular evolution and phylogenetics. Oxford University Press, New York

    Google Scholar 

  • Ng LC, Sariah M, Sariam O, Radziah O, Abi MAZ (2012) Rice seed bacterization for promoting germination and seedling growth under aerobic cultivation system. Aust J Crop Sci 6:170–175

    CAS  Google Scholar 

  • Orozco-Mosqueda MC, Rocha-Granados MC, Glick BR, Santoyo G (2018) Microbiome engineering to improve biocontrol and plant growth-promoting mechanisms. Microbiol Res 208:25–31. https://doi.org/10.1016/j.micres.2018.01.005

    Article  CAS  PubMed  Google Scholar 

  • Oteino N, Lally RD, Kiwanuka S, Lloyd A, Ryan D, Germaine KJ, Dowling DN (2015) Plant growth promotion induced by phosphate solubilizing endophytic Pseudomonas isolates. Front Microbiol 6:745

    PubMed  PubMed Central  Google Scholar 

  • Pageni BB, Lupwayi NZ, Akter Z, Larney NZ, Kwachuk LM, Gan Y (2014) Populations, diversity and identities of bacterial endophytes in potato (Solanum tuberosum L.) cropping systems. Can J Plant Sci 94:1125–1142

    Google Scholar 

  • Payne SM (1993) Iron acquisition in microbial pathogenesis. Trends Microbiol 1:66–69. https://doi.org/10.1016/0966-842X(93)90036-Q

    Article  CAS  PubMed  Google Scholar 

  • Perez-Rosales E, Alcaraz-Melendez L, Puente ME, Vázquez-Juárez R, Quiroz-Guzmán E, Zenteno-Savín T, Morales-Bojórquez E (2017) Isolation and characterization of endophytic bacteria associated with roots of jojoba (Simmondsia chinensis (Link) Schneid). Curr Sci 112:396–401. doi: https://doi.org/10.18520/cs/v112/i02/396-401

  • Phillippot L, Raaijmakers JM, Lemanceau P, van der Putten WH (2013) Going back to the roots: the microbial ecology of the rhizosphere. Nat Rev Microbiol 11:789–799. https://doi.org/10.1038/nrmicro3109

    Article  CAS  Google Scholar 

  • Puri A, Padda KP, Chanway CP (2017) Nitrogen-fixation by endophytic bacteria in agricultural crops: recent advances. In: Fahad S (ed) Amanullah. Nitrogen in Agriculture - Updates. IntechOpen, Rijeka, pp 73–94

    Google Scholar 

  • Rahko J (2012) Potato value chain in Tanzania. University of Helsinki, Thesis

    Google Scholar 

  • Reis VM, Teixera KRS (2015) Nitrogen fixing bacteria in the family Acetobacteraceae and their role in agriculture. J Basic Microbiol 55:31–949

    Google Scholar 

  • Rfaki A, Nassiri L, Ibijbijen J (2015) Isolation and characterization of phosphate solubilizing bacteria from the Rhizosphere of faba bean (Vicia faba L.) in Meknes Region, Morocco. Microbiol Res J Int 6:247–254. https://doi.org/10.9734/BMRJ/2015/14379

    Article  Google Scholar 

  • Richardson AE, Baréa JM, McNeil AM, Prigent-Combaret C (2009) Acquisition of phosphorus and nitrogen in the rhizosphere and plant growth promotion by microorganisms. Plant Soil 321:305–339

    CAS  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23:3984–3999

    CAS  Google Scholar 

  • Saravanan VS, Subramoniam SR, Raj SA (2003) Assessing in vitro solubilization potential of different zinc solubilizing bacteria (ZSB) isolates. Braz J Microbiol 34:121–125

    Google Scholar 

  • Scagliola M, Pii Y, Mimmo T, Cesco S, Ricciuti P, Crecchio C (2016) Characterization of plant growth promoting traits of bacterial isolates from the rhizosphere of barley (Hordeum vulgare L.) and tomato (Solanum lycopersicon L.) grown under Fe sufficiency and deficiency. Plant Physiol Biochem 107:187–196

    CAS  PubMed  Google Scholar 

  • Schwyn B, Neilands JB (1987) Universal chemical assay for the detection and determination of siderophores. Anal Biochem 60:47–56

    Google Scholar 

  • Senkoro CJ, Ley GL, Marandu AE, Wortmann C, Mzimbin M, Msaky J, Umbwe R, Lyimo SD (2017) Optimizing fertilizer use within the context of integrated soil fertility management in Tanzania. In: Wortmann C, Sonec K (eds) Fertilizer use optimization in Sub Saharan Africa. CABI Publishing, Wallingford, pp 176–192

    Google Scholar 

  • Shahid M, Hameed S, Imram A, Ali S, Van Elsas JD (2012) Root colonization and growth promotion of sunflower (Helianthus annuus L.) by phosphate solubilizing Enterobacter sp. Fs-11. World J Microbiol Biotechnol 28:2749–2758. https://doi.org/10.1007/s11274-012-1086-2

    Article  CAS  PubMed  Google Scholar 

  • Shakeela S, Padder SA, Bhat ZA (2017) Isolation of phosphate solubilising rhizobacteria and endorhizobacteria from medicinal plant Picrorhiza kurroa and their optimization for tricalcium phosphate solubilization. The Pharma Inn 6:160–170

    CAS  Google Scholar 

  • Sindhu SS, Gupta SK, Dadarwal KR (1999) Antagonistic effect of Pseudomonas spp. on pathogenic fungi and enhancement of plant growth in green gram (Vigna radiata). Biol Fertil Soils 29:62–68

    CAS  Google Scholar 

  • Singh P, Kumar V, Aragwal S (2014) Evaluation of phytase producing bacteria for their plant growth promoting activities. Int J Microbiol:1–7

  • Singh RP, Mishra S, Jha P, Raghuvanshi S, Jha PN (2018) Effect of inoculation of zinc-resistant bacterium Enterobacter ludwigii CDP-14 on growth, biochemical parameters and zinc uptake in wheat (Triticum aestivum L.) plant. Ecol Eng 116:163–173. https://doi.org/10.1016/j.ecoleng.2017.12.033

    Article  Google Scholar 

  • Souza R, Ambrosini A, Passaglia LMP (2015) Plant growth-promoting bacteria as inoculants in agricultural soils. Genet Mol Biol 38:401–419

    PubMed  PubMed Central  Google Scholar 

  • Stefan M, Munteanu N, Stoleru V, Mihasan M, Hritcu L (2013) Seed inoculation with plant growth promoting Rhizobacteria enhances photosynthesis and yield of runner bean (Phaseolus coccineus L.). Sci Hortic 151:22–29. doi: https://doi.org/10.1016/j.scienta.2012.12.006

  • Sunithakumari K, Padma DSN, Vasandha S (2016) Zinc solubilizing bacterial isolates from the agricultural fields of Coimbatore, Tamil Nadu, India. Curr Sci 110:196–205

    CAS  Google Scholar 

  • Sureshbabu K, Amaresan N, Kumar K (2016) Amazing multiple function properties of plant growth promoting rhizobacteria in the rhizosphere soil. Int J Curr Microbiol Appl Sci 5:661–683

    CAS  Google Scholar 

  • Tahir MI, Inam-ul-Haq M, Ashfaq M, Abbasi NA, Butt H, Ghazal H (2016) Screening of effective antagonists from potato rhizosphere against bacterial wilt pathogen. Int J Biosci 8:228–240

    CAS  Google Scholar 

  • TanzaniaInvest (2016) Tanzania signs Memorandum of Understanding (MoU) with Netherlands to boost Potato production. https://www.tanzaniainvest.com/agriculture/netherlands-potato-mou.

  • Timmusk S, Behers L, Muthoni J, Muraya A, Aronsson AC (2017) Perspectives and challenges of microbial application for crop improvement. Front Plant Sci 8:49

    PubMed  PubMed Central  Google Scholar 

  • Toju H, Peay KG, Yamamichi K, Narisawa K, Hiruma K, Naito K (2018) Core microbiomes for sustainable agroecosystems. Nat Plants 4:247–257

    PubMed  Google Scholar 

  • Valetti L, Iriarte L, Farba A (2018) Growth promotion of rapeseed (Brassica napus) associated with the inoculation of phosphate solubilizing bacteria. Appl Soil Ecol 132:1–10

    Google Scholar 

  • Vejan P, Abdullah R, Khadiran T, Ismail S, Boyce AN (2016) Role of plant growth promoting rhizobacteria in agricultural sustainability. Molecules 21:5–17

    Google Scholar 

  • Vincent JM (1970) A manual for the practical study of the root-nodule bacteria. Blackwell Scientific Publication, Oxford

    Google Scholar 

  • Vreugdenhil D (2007) Potato biology and biotechnology - advances and perspectives. Elsevier, Amsterdam

    Google Scholar 

  • Wahyudi AT, Astuti RP, Widyawati A, Meryandini AA, Nawagsih AA (2011) Characterization of Bacillus sp. strains isolated from rhizosphere of soybean plants for their use as potential plant growth promoting rhizobacteria. J Microbiol Antimicrob 3:34–40

    Google Scholar 

  • Wei CY, Lin L, Luo LJ, Xing YX, Hu CJ, Yang LT, Li YR, An Q (2014) Endophytic nitrogen-fixing Klebsiella variicola strain DX120E promotes sugarcane growth. Biol Fertil Soils 50:657–666

    CAS  Google Scholar 

  • Wu F, Wang W, Ma Y, Lin Y, Ma X, An I, Feng H (2013) Prospect of beneficial microorganisms applied in potato cultivation for sustainable production. Afr J Microbiol Res 7:2150–2158

    Google Scholar 

  • Wu K, Luo J, Li J, An Q, Yang X, Liang Y, Li T (2018) Endophytic bacterium Buttiauxella sp. SaSR13 improves plant growth and cadmium accumulation of hyperaccumulator Sedum alfredii. Environ Sci Pollut Res 25:21844–21854. https://doi.org/10.1007/s11356-018-2322-6

    Article  CAS  Google Scholar 

  • Youssef MMA, Eissa MFM (2014) Biofertilizers and their role in management of plant parasitic nematodes. A review. J Biotechnol Pharm Res 5:1–6

  • Zahid M, Abbasi NK, Hameed S, Rahim N (2015) Isolation and identification of indigenous plant growth promoting rhizobacteria from Himalayan region of Kashmir and their effect on improving growth and nutrient contents of maize (Zea mays L.). Front Microbiol 6:207. https://doi.org/10.3389/fmicb.2015.00207

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We acknowledge Ms. Innes Fridrich and Dr. Amelie Dukunde for their invaluable support with methodologies throughout the molecular studies on the rhizobacterial isolates, and the Green Talents Programme of the Federal Ministry of Education and Research (BMBF) in Germany for the support offered by funding BNA’s research stay at the University of Gottingen which made it possible to complete this research.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Aloo B. N, Rolf D. and Hertel R. The first draft of this manuscript was written by Aloo B. N. and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to B. N. Aloo.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aloo, B.N., Mbega, E.R., Makumba, B.A. et al. Molecular Identification and In Vitro Plant Growth-Promoting Activities of Culturable Potato (Solanum tuberosum L.) Rhizobacteria in Tanzania. Potato Res. 64, 67–95 (2021). https://doi.org/10.1007/s11540-020-09465-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11540-020-09465-x

Keywords

Navigation