Skip to main content

Advertisement

Log in

Influence and interaction of iron and lead on seed germination in upland rice

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

Lead is a hazardous heavy metal pollutant present in the environment, and iron is an essential micronutrient with numerous cellular functions in normal physiology. However few studies have focused on the influence and interaction of lead and iron changes during plant growth. So the present study investigated the mechanism how lead and iron affected in upland rice (Oryza sativa L.) in order to clarify the relationship between iron and lead.

Methods

The seeds of upland rice were supplied with iron (Fe), lead (Pb), and Fe and Pb together, respectively. Then the seed germination, ion absorption, gibberellins (GAs) and abscisic acid (ABA) metabolism and sugar utilization were determined.

Results

Lead treatment delayed upland rice seed germination, deactivated GA, inhibited GA signal transduction and increased ABA synthesis in the seed. In addition, the soluble sugar concentration in seeds was reduced alongside reduction in the activity levels of α-amylase (EC 3.2.1.1) and β-amylase (EC 3.2.1.2) during the earlier stages, but these increased in a time-dependent manner, reaching a stable level in response to lead-induced stress at 72 h. In contrast, iron alleviated the lead-induced changes in seed germination stage. Notably, the interaction between iron and lead increased GA signal transduction and inhibited ABA synthesis, whilst increasing starch hydrolysis and sugar consumption to augment rice seed germination.

Conclusions

The results suggest that iron (such as in iron fertilizers) may be promising additives for agricultural use, improving plant germination, whilst simultaneously reducing the toxicity of lead in widely contaminated soils.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ashraf U, Kanu AS, Mo Z, Hussain S, Anjum SA, Khan I, Abbas RN, Tang X (2015) Lead toxicity in rice: effects, mechanisms, and mitigation strategies—a mini review. Environ Sci Pollut Res 22(23):18318–18332

    CAS  Google Scholar 

  • Ayele BT, Ozga JA (2012) Wickramarathna AD, Reinecke DM. Gibberellin metabolism and transport during germination and young seedling growth of pea (Pisum sativumL.). J. Plant Growth Regul 31:235–252

    CAS  Google Scholar 

  • Benavides MP, Gallego SM, Tomara ML (2005) Lead toxicity in plants. Braz J Plant Physiol 17(1):35–52

    Google Scholar 

  • Białecka B, KepczynSki J (2009) Effect of ethephon and gibberellin A3 on Amaranthus caudatus seed germination and α- and β-amylase activity under salinity stress. Acta Biol Cracov Ser Bot 51:119–125

    Google Scholar 

  • Bose B, Anaytullah KS, Srivastava AK, Kuril SK, Singh PK (2008) Effect of mercuric chloride on seed germination, seedling growth and enzyme activities in maize (Zea mays L.). Indian J. Plant Physiol 13:284–290

    CAS  Google Scholar 

  • Cao H, Guo S, Xu Y, Jiang K, Jones AM, Chong K (2011) Reduced expression of a gene encoding a golgi localized monosaccharide transporter (osgmst1) confers hypersensitivity to salt in rice (oryza sativa). J Exp Bot 62(13):4595–4604

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carrera E, Jackson SD, Prat S (1999) Feedback control and diurnal regulation of gibberellins 20-oxidase transcript levels in potato. Plant Physiol 119:765–773

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chatterjee C, Dube BK, Sinha P, Srivastava P (2004) Detrimental effects of lead phytotoxicity on growth, yield, and metabolism of rice. Commun Soil Sci Plant Anal 35:255–265

  • Chen BX, Ma J, Xu ZJ, Wang X (2016a) Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination. J Integr Plant Biol 58(10):859–869

    CAS  PubMed  Google Scholar 

  • Chen JY, Liu SL, Siao W, Wang SJ (2010) Hormone and sugar effects on rice sucrose transporter OsSUT1 expression ingerminating embryos. Acta Physiol Plant 32:749–756

    CAS  Google Scholar 

  • Chen S, Chao L, Sun L, Sun T (2013) Impacts of trace elements iron and zinc on phytoavailability of heavy metals cadmium and lead. Adv Mater Res 664:504–509

    Google Scholar 

  • Chen S, Zhao Y, Li Z, Li Y, Jiang Y, Hou X, Cai L (2019) Biochemical changes and subcellular structure in germinating seeds of Liquidambar formosana under Pb, cd, and acid stress. J Agro-Environ Sci 38(3):510–520

    Google Scholar 

  • Chen Z, Pan X, Chen H, Lin Z, Guan X (2015) Investigation of lead (II) uptake by Bacillus thuringiensis 016. World J Microbiol Biotechnol 31:1729–1736

    CAS  PubMed  Google Scholar 

  • Chen Z, Pan XH, Chen H, Guan X, Lin Z (2016b) Biomineralization of Pb(II) into Pb-hydroxyapatite induced by Bacillus cereus 12–2 isolated from Lead-zinc mine tailings.J. Hazard Mater 301:531–537

    CAS  Google Scholar 

  • Chung P, Hsiao HH, Chen HJ, Chang CW, Wang SJ (2013) Influence of temperature on the expression of the rice sucrose transporter 4 gene, OsSUT4, in germinating embryos and maturing pollen. Acta Physiol Plant 36:217–229

    Google Scholar 

  • Codling EE, Dao TH (2007) Short-term effect of lime, phosphorus, and iron amendments on water-extractable lead and arsenic in orchard soils. Commun Soil Sci Plant Anal 38(7–8):903–919

    CAS  Google Scholar 

  • Debeaujon I, Koornneef M (2000) Gibberellin requirement for Arabidopsis seed germination is determined both by testa characteristics and embryonic abscisic acid. Plant Physiol 122:415–424

    CAS  PubMed  PubMed Central  Google Scholar 

  • Farooq M, Wahid A, Lee DJ, Ito O, Siddique KH (2009) Advances in drought resistance of rice. Crit Rev Plant Sci 28:199–217

    CAS  Google Scholar 

  • Fleet CM, Sun TP (2005) A DELLAcate balance: the role of gibberellin in plant morphogenesis. Curr Opin Plant Biol 8(1):77–85

    CAS  PubMed  Google Scholar 

  • Gallardo K, Job C, Groot SP, Puype M, Demol H, Vandekerckhove J, Job D (2002) Proteomics of Arabidopsis seed germination. A comparative study of wild-type and gibberellin - deficient seeds. Plant Physiol 129(2):823–837

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ghorbanli M, Kaveh SH, Sepehr MF (1999) Effects of cadmium and gibberellin on growth and photosynthesis of Glycine max. Photosynthetica. 37:627–631

    CAS  Google Scholar 

  • Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M (2004) GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J 37:626–634

    CAS  PubMed  Google Scholar 

  • Gopal R, Rizvi AH (2008) Excess lead alters growth, metabolism and translocation of certain nutrients in radish. Chemosphere. 70(9):1539–1544

    CAS  PubMed  Google Scholar 

  • Govarthanan M, Lee KJ, Cho M, Kim JS, Kamala-Kannan S, Oh BT (2013) Significance of autochthonous Bacillus sp. KK1 on biomineralization of lead in minetailings. Chemosphere. 90:2267–2272

    CAS  PubMed  Google Scholar 

  • Hänsch R, Mendel RR (2009) Physiological functions of mineral micronutrients431 (cu, Zn, Mn, Fe, Ni, Mo, B, cl). Curr Opin Plant Biol 12:259–266

    PubMed  Google Scholar 

  • Hansen J, Møller I (1975) Percolation of starch and soluble carbohydrates from planttissue for quantitative determination with anthrone. Anal Biochem 68:87–94

    CAS  PubMed  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    CAS  PubMed  Google Scholar 

  • Heidari Dehno A, Mohtadi A (2018) The effect of different iron concentrations on lead accumulation in hydroponically grown Matthiola flavida Boiss. Ecol Res 33(4):757–765

    CAS  Google Scholar 

  • Heidari M, Sarani S (2012) Growth, biochemical components and ion content of chamomile (MatricariachamomillaL.) under salinity stress and iron deficiency. J. Saudi Soc. Agric. Sci. 11(1):37–42

    CAS  Google Scholar 

  • Hell R, Stephan UW (2003) Iron uptake, trafficking and homeostasis in plants. Planta. 216:541–551

    CAS  PubMed  Google Scholar 

  • Hirano K, Kouketu E, Katoh H, Aya K, Ueguchitanaka M, Matsuoka M (2012) The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. Plant J 71:443–453

    CAS  PubMed  Google Scholar 

  • Hong F (2003) Study of the effect of Pb2+ on alpha-amylase activity by spectroscopy. Guang Pu xue yu guang pu fen xi 23(3):583–586

    CAS  PubMed  Google Scholar 

  • Huang J, Tang D, Shen Y, Qin B, Hong L, You A, Li M, Wang X, Yu H, Gu M (2010) Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates adominant semi-dwarf phenotype in rice (Oryza sativa L.). J Genet Genomics 37:23–36

    CAS  PubMed  Google Scholar 

  • Huang Y, Hu Y, Liu Y (2009) Heavy metal accumulation in iron plaque and growth of rice plants upon exposure to single and combined contamination by copper, cadmium and lead. Acta Ecol Sin 29:320–326

    Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) Slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the slr1 gene, an ortholog of the height-regulating gene gai/rga/rht/d8. Plant Cell 13(5):999–1010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jamil HMA, Rashid S, Abbasi GH, Ahmad R (2018) Differential expression of antioxidants, Fe and Zn transporter genes in wheat under Pb stress. Zemdirbyste-Agriculture. 105(1):49–54

    Google Scholar 

  • Jomova K, Valko M (2011) Advances in metal-induced oxidative stress and human disease. Toxicol. 283(2-3):65–87

    CAS  Google Scholar 

  • Karssen CM, Lacka E (1986) A revision of the hormone balance theory of seed dormancy: studies on gibberellin and/or abscisic acid-deficient mutants of Arabidopsis thaliana. BOPP M. Plant growth substances. Berlin: Springer-Verlag, 315–323

  • Klepek Y, Geiger D, Stadler R, Klebl F, Landouar-Arsivaud L, Lemoine R, Hedrich R, Sauer N (2005) Arabidopsis polyol transporter5, a new member of the monosaccharide transporter-like superfamily, mediates h1-symport of numerous substrates, including myo-inositol, glycerol, and ribose. Plant Cell 17:204–218

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kobayashi T, Nakanishi H, Nishizawa NK (2010) Recent insights into iron homeostasis and their application in graminaceous crops. P. Jpn. Acad. B-Phys. 86(9):900–9I3

    CAS  Google Scholar 

  • Komarek M, Ettler V, Chrastny V, Mihaljevic M (2008) Lead isotopes in environmental sciences: a review. Environ Int 34:562–577

    CAS  PubMed  Google Scholar 

  • Kosobrukhov A, Knyazeva I, Mudrik V (2004) Plantago major plants responses to increase content of lead in soil : growth and photosynthesis. Plant Growth Regul 42(2):145–151

    CAS  Google Scholar 

  • Kumar M, Pant B, Mondal S, Bose B (2016) Hydro and halo priming: influenced germination responses in wheat Var-HUW-468 under heavy metal stress. Acta Physiol Plant 38:217

    Google Scholar 

  • Li J, Liu Z, He C, Yue H, Gou S (2017) Water shortages raised a legitimate concern over the sustainable development of the dry lands of northern China: evidence from the water stress index. Sci Total Environ 590-591:739–750

    CAS  PubMed  Google Scholar 

  • Li W, Yamaguchi S, Khan MA, An P, Liu X, Tran LSP (2016) Roles of gibberellins and abscisic acid in regulating germination of suaeda salsa dimorphic seeds under salt stress. Front Plant Sci 6:1235

    PubMed  PubMed Central  Google Scholar 

  • Li X, Ma L, Li Y, Wang L, Zhang L (2019) Endophyte infection enhances accumulation of organic acids and minerals in rice under Pb2+ stress conditions. Ecotoxicol Environ Saf 174:255–262

    CAS  PubMed  Google Scholar 

  • Lian HL, Yu X, Lane D, Sun WN, Tang ZC, Su WA (2006) Upland rice and lowland rice exhibited different pip expression under water deficit and ABA treatment. Cell Res 16(7):651–660

    CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCq method. Method. Methods. 25:402–408

    CAS  Google Scholar 

  • López ML, Peralta-Videa JR, Benitez T, Duarte-Gardea M, Gardea-Torresdey JL (2007) Effects of lead, EDTA, and IAA on nutrient uptake by alfalfa plants. J PlantNutr 30:1247–1261

    Google Scholar 

  • Luo LJ (2010) Breeding for water-saving and drought-resistance rice (WDR) inChina. J Exp Bot 61:3509–3517

    CAS  PubMed  Google Scholar 

  • Magome H, Yamaguchi S, Hanada A, Kamiya Y, Oda K (2008) The DDF1 transcriptional activator upregulates expression of a gibberellin-deactivating gene, GA2ox7, under high-salinity stress in Arabidopsis. Plant J 56:613–626

    CAS  PubMed  Google Scholar 

  • Manzoor M, Abid R, Rathinasabapathi B, De Oliveira LM, da Silva E, Deng F, Rensing C, Arshad M, Gul I, Xiang P, Ma LQ (2019) Metal tolerance of arsenic-resistant bacteria and their ability to promote plant growth of Pteris vittata in Pb-contaminated soil. Sci. Total Environ 660:18–24

    CAS  PubMed  Google Scholar 

  • Meng J, Wang W, Li L, Zhang G (2018) Tissue-specific molecular and cellular toxicity of Pb in the oyster (Crassostreagigas): mRNA expression and physiological studies. Aquat Toxicol 198:257–268

    CAS  PubMed  Google Scholar 

  • Meng Y, Chen F, Shuai H, Luo X, Ding J, Tang S, Xu S, Liu J, Liu W, Du J, Liu J, Yang F, Sun X, Yong T, Wang X, Feng Y, Shu K, Yang W (2016) Karrikins delay soybeanseed germination by mediating abscisic acid and gibberellin biogenesis under shaded conditions. Sci Rep 6:22073

    CAS  PubMed  PubMed Central  Google Scholar 

  • Morrissey J, Guerinot ML (2009) Iron uptake and transport in plants: the good, the bad, and the lonome. Chem Rev 109(10):4553–4567

    CAS  PubMed  PubMed Central  Google Scholar 

  • Moya JL, Ros R, Picazo I (1995) Heavy metal-hormone interactions in rice plants: effects on growth, net photosynthesis, and carbohydrate distribution. J Plant Growth Regul 14:61–67

    CAS  Google Scholar 

  • Naik, M.M., Dubey, S.K., 2013. Lead resistant bacteria: lead resistance mechanisms, their applications in lead bioremediation and biomonitoring. Ecotoxicol. Environ. Saf. 98, 1-7

  • Nambara E, Akazawa T, Mccourt P (1991) Effects of the gibberellin biosynthetic inhibitor uniconazol on mutants of Arabidopsis. Plant Physiol 97:736–738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ogo Y, Kakei Y, Itai RN, Obayashi TK, Nakanishi H, Takahashi H, Nakazono M, Nishizawa NK (2014) Spatial transcriptomes of iron-deficient and cadmium-stressed rice. New Phytol 201:781–794

    CAS  PubMed  Google Scholar 

  • Oliver SN, Dennis ES, Dolferus R (2007) ABA regulates Apoplastic sugar transport and is a potential signal for cold-induced pollen sterility in Rice. Plant Cell Physiol 48(9):1319–1330

    CAS  PubMed  Google Scholar 

  • Olszewski N, Sun TP, Gubler F (2002) Gibberellin signaling: biosynthesis, catabolism, and response pathways. Plant Cell 14(Suppl):S61–S80

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ouzounidou G, Moustakas M, Eleftheriou EP (1997) Physiological and ultra-structural effects of cadmium on wheat (Triticum aestivum L.) leaves. Arch Environ Contam Toxicol 32:154–160

    CAS  PubMed  Google Scholar 

  • Parys E, Romanowska E, Siedlecka M, Poskuta J (1998) The effect of lead on photosynthesis and respiration in detached leaves and in mesophyll protoplasts of Pisumsativum. Acta Physiol Plant 20:313–322

    CAS  Google Scholar 

  • Qufei L, Fashui H (2009) Effects of Pb2+ on the structure and function of photosystem II of Spirodela polyrrhiza. Biol Trace Elem Res 129:251–260

    PubMed  Google Scholar 

  • Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P (2008) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504

    CAS  PubMed  Google Scholar 

  • Rubio MI, Escrig I, Martínez-Cortina C (1994) Cadmium and nickel accumulation in rice plants. Effects on mineral nutrition and possible interactions of abscisic and gibberellic acids. Plant Growth Regul 14:151–157

    CAS  Google Scholar 

  • Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science. 299:1896–1898

    CAS  PubMed  Google Scholar 

  • Sengar RS, Gautam M, Sengar RS, Garg SK, Sengar K, Chaudhary R (2009) Lead stress effects on physiobiochemical activities of higher plants. Rev Environ Contam Toxicol 196:1–21

    Google Scholar 

  • Seregin IV, Shpigun LK, Ivanov VB (2004) Distribution and toxic effects of cadmium and lead on maize roots. Russ J Plant Physiol 51:525–533

    CAS  Google Scholar 

  • Shu K, Liu XD, Xie Q, He ZH (2016) Two faces of one seed: hormonal regulation ofdormancy and germination. Mol Plant 9:34–45

    CAS  PubMed  Google Scholar 

  • Shu K, Qi Y, Chen F, Meng Y, Luo X, Shuai H, Zhou W, Ding J, Du J, Liu J, Yang F, Wang Q, Liu W, Yong T, Wang X, Feng Y, Yang W (2017) Salt stress represses soybean seed germination by negatively regulating GA biosynthesis while positively mediating ABA biosynthesis. Front Plant Sci 8:1372

    PubMed  PubMed Central  Google Scholar 

  • Shu X, Zhang Q, Wang W (2014) Lead induced changes in growth and micronutrient uptake of Jatropha curcas L. Bull Environ Contam Toxicol 93(5):611–617

    CAS  PubMed  Google Scholar 

  • Siddiqui M, Al-Whaibi M, Basalah M (2011) Interactive effect of calcium and gibberellinson nickel tolerance in relation to antioxidant systems in Triticum aestivum L. Protoplasma. 248:503–511

    CAS  PubMed  Google Scholar 

  • Sinha P, Dube B, Srivastava P, Chatterjee C (2006) Alteration in uptake and trans-location of essential nutrients in cabbage by excess lead. Chemosphere. 65:651–656

    CAS  PubMed  Google Scholar 

  • Sumati G, Kiran G, Usha B, Mishra K (2011) Ameliorating effect of iron on lead induced phytotoxicity in azolla pinnata. J Appl Biosci 37(2):169–174

    Google Scholar 

  • Sun T (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55(1):197–223

    CAS  PubMed  Google Scholar 

  • Turgeon R, Medville R (2004) Phloem loading. A reevaluation of the relationship between plasmodesmatal frequencies and loading strategies. Plant Physiol 136(3):3795–3803

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBER-ELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellins. Nature. 437(7059):693–698

    CAS  PubMed  Google Scholar 

  • Ueguchi-Tanaka M, Nakajima M, Motoyuki A, Matsuoka M (2007) Gibberellin receptor and its role in gibberellin signaling in plants. Annu Rev Plant Biol 58:183–198

    CAS  PubMed  Google Scholar 

  • Wang Y, Cui Y, Hu G, Wang X, Chen H, Shi Q, Xiang J, Zhang Y, Zhu D, Zhang Y (2018) Reduced bioactive gibberellin content in rice seeds under low temperature leads to decreased sugar consumption and low seed germination rates. Plant Physiol Biochem 133:1–10

    PubMed  Google Scholar 

  • Wang Y, Xu L, Chen Y, Shen H, Gong Y, Limera C, Liu L (2013) Transcriptome profiling of radish (raphanus sativus l.) root and identification of genes involved in response to lead (pb) stress with next generation sequencing. Plos one 8(6):e66539

    CAS  PubMed  PubMed Central  Google Scholar 

  • Williams LE, Lemoine R, Sauer N (2000) Sugar transporters in higher plants-a diversity of roles and complex regulation. Trends Plant Sci 5(7):283–290

    CAS  PubMed  Google Scholar 

  • Williams N (2010) World gears up to water shortages. Curr Biol 20(9):R383–R384

    CAS  Google Scholar 

  • Xia H, Luo Z, Xiong J, Ma X, Lou Q, Wei H, Qiu J, Yang H, Liu G, Fan L, Chen L, Luo L (2019) Bi-directional selection in upland rice leads to its adaptive differentiation from lowland rice in drought resistance and productivity. Mol Plant 12(2):170–184

    CAS  PubMed  Google Scholar 

  • Xie T, Li Y, Dong H, Liu Y, Wang M, Wang G (2019) Effects and mechanisms on the reduction of lead accumulation in rice grains through lime amendment. Ecotoxicol Environ Saf 173:266–272

    CAS  PubMed  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    CAS  PubMed  Google Scholar 

  • Yousfi S, Houmani H, Zribi F, AbdeHy C, Gharsalli M (2012) Physiological responses of wild and cultivated barley to the interactive effect of salinity and iron deficiency. ISRN Agron 2012:1–8

    Google Scholar 

  • Zhang H, Hu LY, Hu KD, He YD, Wang SH, Luo JP (2008) Hydrogen sulfide promotes wheat seed germination and alleviates oxidative damage against copper stress. J Integr Plant Biol 50(12):1518–1529

    CAS  PubMed  Google Scholar 

  • Zhao FJ, Ma Y, Zhu YG, Tang Z, McGrath SP (2015) Soil contamination in China: current status and mitigation strategies. Environ. Sci. Technol 49:750–759

    CAS  PubMed  Google Scholar 

  • Zhu XF, Jiang T, Wang ZW (2012) Gibberellic acid alleviates cadmium toxicity by reducing nitric oxide accumulation and expression of IRT1 in Arabidopsis thaliana. J Hazard Mater 239:302–307

    PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by Zhejiang Provincial Science and Technology Project (Grant No. 2018C02042) and Zhejiang Science and Technology Major Program on Agricultural (grain) New Variety Breeding (Grant No.2016C02050-6-03).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuchuan Qin or Yifeng Zhou.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Miroslav Nikolic

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 124 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Liu, B., Wang, Y. et al. Influence and interaction of iron and lead on seed germination in upland rice. Plant Soil 455, 187–202 (2020). https://doi.org/10.1007/s11104-020-04680-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-020-04680-4

Keywords

Navigation