Skip to main content
Log in

Experimental investigation of seepage characteristics in porous rocks with a single fracture

Étude expérimentale des caractéristiques d’écoulement dans des roches poreuses à une seule fracture

Investigación experimental de las características de filtración en rocas porosas con una sola fractura

单裂隙多孔岩体渗流特性试验研究

Investigação experimental das características do fluxo em rochas porosas com uma única fratura

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

An experimental investigation of seepage characteristics in porous rocks with a single fracture is presented. A seepage system was developed and assembled in the laboratory using two experimental setups. Tests were conducted to quantify the effects of influent pattern, fracture aperture (B), coefficient of permeability of the porous medium (k), hydraulic gradient (J), and water temperature (T) on the seepage characteristics of a porous concrete matrix with a fracture; the porous concrete, with controlled characteristics, was designed to simulate porous rock. The mechanisms of seepage exchange between the porous media and the fracture are discussed, and a new formula for describing the seepage mechanism in a porous rock with a single fracture is proposed. The results showed that B, k, and influent pattern had significant effects on the seepage between the fracture and the porous concrete. The amount of effluent exiting the fracture was greater than that exiting the porous concrete blocks. The proposed model indicated that when B was less than 3.0 mm, the variation in fracture aperture had a significant influence on the effluent from the fracture, while its influence was relatively small when B was greater than 3.0 mm. When k was less than 1.0 cm/s and B increased to 4.8 mm, seepage exited only via the fracture. The proposed mathematical model can be used to effectively estimate the seepage through porous rocks with a fracture.

Résumé

Une étude expérimentale des caractéristiques d’écoulement dans des roches poreuses à une seule fracture est présentée. Un système d’écoulement a été développé et assemblé en laboratoire à l’aide de deux dispositifs expérimentaux. Des tests ont été effectués pour quantifier les effets de la géométrie des écoulements entrants, de l’ouverture de la fracture (B), du coefficient de perméabilité du milieu poreux (k), du gradient hydraulique (J) et de la température de l’eau (T) sur les caractéristiques d’écoulement d’une matrice de béton poreux avec une fracture; le béton poreux, avec des caractéristiques contrôlées, a été conçu pour simuler une roche poreuse. Les mécanismes d’échange par écoulement entre le milieu poreux et la fracture sont examinés, et une nouvelle formule pour décrire le mécanisme d’écoulement dans une roche poreuse avec une seule fracture est proposée. Les résultats ont montré que B, k et la géométrie des écoulements entrants ont des effets significatifs sur l’écoulement entre la fracture et le béton poreux. Le débit sortant de la fracture était plus important que celui sortant des blocs de béton poreux. Le modèle proposé a indiqué que, lorsque B était inférieur à 3.0 mm, la variation de l’ouverture de la fracture avait une influence significative sur le débit sortant de la fracture, alors que son influence était relativement faible lorsque B était supérieur à 3.0 mm. Lorsque k était inférieur à 1.0 cm/s et que B augmentait à 4.8 mm, l’écoulement ne sortait que par la fracture. Le modèle mathématique proposé peut être utilisé pour estimer efficacement l’écoulement à travers les roches poreuses présentant une fracture.

Resumen

Se presenta una investigación experimental de las características de filtración en rocas porosas con una sola fractura. Se desarrolló un sistema de filtración y se ensambló en el laboratorio utilizando dos montajes experimentales. Se realizaron pruebas para cuantificar los efectos del esquema de influencias, la apertura de la fractura (B), el coeficiente de permeabilidad del medio poroso (k), el gradiente hidráulico (J) y la temperatura del agua (T) en las características de filtración de una matriz de hormigón poroso con una fractura; el hormigón poroso, con características controladas, se diseñó para simular la roca porosa. Se examinan los mecanismos de intercambio de filtración entre el medio poroso y la fractura, y se propone una nueva fórmula para describir el mecanismo de infiltración en una roca porosa con una sola fractura. Los resultados mostraron que los patrones B, k e influyentes tenían efectos significativos en la filtración entre la fractura y el hormigón poroso. La cantidad de efluente que salía de la fractura era mayor que la que salía de los bloques de hormigón poroso. El modelo propuesto indicaba que cuando B era inferior a 3.0 mm, la variación de la abertura de la fractura tenía una influencia significativa en el efluente de la fractura, mientras que su influencia era relativamente pequeña cuando B era superior a 3.0 mm. Cuando k era inferior a 1.0 cm/s y B aumentaba a 4.8 mm, la filtración salía sólo por la fractura. El modelo matemático propuesto puede utilizarse para estimar eficazmente la filtración a través de las rocas porosas con fractura.

摘要

开展了单裂隙多孔岩体渗流特性实验研究。利用两个试验装置在实验室开发并组装了一套渗流试验系统。通过室内试验定量研究进水模式, 裂隙开度(B), 多孔介质的渗透系数(k), 水力梯度(J)和水温(T)对含裂隙多孔混凝土基质渗流特性的影响。本文设计渗透性可控的多孔混凝土来模拟多孔岩体。讨论了多孔介质与裂隙之间渗流交换的机理, 提出了描述单裂隙多孔岩体渗流机理的新公式。结果表明, B, k和进水方式对裂隙与多孔混凝土之间的渗流有显著影响。经裂隙流出的水量大于多孔混凝土基质的出水量。模型研究表明, 当B小于3.0 mm时, 裂隙开度变化对裂隙出水量有显著影响, 而当B大于3.0 mm时, 其影响相对较小。当k小于1.0 cm / s且B增加到4.8 mm时, 出水量全部经由裂隙排出。所提出的数学模型可用于有效估算含单裂隙多孔岩体的出渗流量。

Resumo

Uma investigação experimental das características do fluxo em rochas porosas com uma única fratura é apresentada. Um sistema de fluxo foi desenvolvido e construído em laboratório usando duas configurações experimentais. Os testes foram conduzidos para quantificar os efeitos do padrão de influência, da abertura da fratura (B), do coeficiente de permeabilidade do meio poroso (k), do gradiente hidráulico (J), e da temperatura da água (T) nas características do fluxo da matriz porosa de um concreto com uma fratura; o concreto poroso, com características controláveis, foi projetado para simular rocha porosa. Os mecanismos de troca de fluxo entre o meio poroso e a fratura são discutidos, e uma nova fórmula é proposta para descrever o mecanismo de fluxo em uma rocha porosa com uma única fratura. Os resultados mostram que B, k, e o padrão influente tem significativo efeitos no fluxo ente a fratura e o concreto poroso. O montante de efluente saindo da fratura foi maior que saindo dos blocos de concreto poroso. O modelo proposto indicou que quando B foi menos que 3.0 mm, a varrição da abertura da fratura tem significativa influência no efluente da fratura, enquanto que sua influência foi relativamente pequena quando B foi maior que 3.0 mm. Quando k foi menor que 1.0 cm/s e B aumentou para 4.8 mm, o fluxo apenas saiu pela fratura. O modelo matemático proposto pode ser usado para efetivamente estimar o fluxo através de rochas porosas com uma fratura.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  • Adler PM, Thovert JF (1999) Fractures and fracture networks. Springer, Berlin

    Google Scholar 

  • Atkinson LC (2000) The role and mitigation of groundwater in slope stability. In: Slope stability in surface mines, chap 9. SME, Littleton, CO, pp 89–96

  • Baghbanan A, Jing LR (2008) Stress effects on permeability in a fractured rock mass with correlated fracture length and aperture. Int J Rock Mech Min 45:1320–1334

    Google Scholar 

  • Barton N, de Quadros EF (1997) Joint aperture and roughness in the prediction of flow and grout ability of rock masses. Int J Rock Mech Min Sci 34(3–4):252.e1–252.e14

    Google Scholar 

  • Berkowitz B (1993) Percolation theory and its application to groundwater hydrology. Water Resour Res 29(4):775–794

    Google Scholar 

  • Blessent D, Therrien R, Gable CW (2011) Large-scale numerical simulation of groundwater flow and solute transport in discretely-fractured crystalline bedrock. Adv Water Resour Res 34:1539–1552

    Google Scholar 

  • Bourbiaux B, Ding D (2016) Simulation of transient matrix-fracture transfers of compressible fluids. Transp Porous Media 114(3):1–23

    Google Scholar 

  • Brown SR (1987) Fluid flow through rock joints: the effect of surface roughness. J Geophys Res 92(B2):1337–1347

    Google Scholar 

  • Bui BT, Tutuncu AN (2017) Contribution of osmotic transport on oil recovery from rock matrix in unconventional reservoirs. J Pet Sci Eng 157:392–408

    Google Scholar 

  • Chen YD, Liang WG, Lian HJ, Yang JF, Nguyen VP (2017) Experimental study on the effect of fracture geometric characteristics on the permeability in deformable rough-walled fractures. Int J Rock Mech Min Sci 98(10):121–140

    Google Scholar 

  • Chen YF, Liu MM, Hu SH, Zhou CB (2015a) Non-Darcy’s law-based analytical models for data interpretation of high-pressure packer tests in fractured rocks. Eng Geol 199:91–106

    Google Scholar 

  • Chen YF, Zhou JQ, Hu SH, Hu R, Zhou CB (2015b) Evaluation of Forchheimer equation coefficients for non-Darcy flow in deformable rough-walled fractures. J Hydrol 529:993–1006

    Google Scholar 

  • Chen Z, Narayan SP, Yang Z (2000) An experimental investigation of hydraulic behavior of fractures and joints in granitic rock. Int J Rock Mech Min Sci 37:1061–1071

    Google Scholar 

  • Hoek E, Bray JW (2005) Rock slope engineering, chap 5. Institution of Mining and Metallurgy, London, Taylor and Francis e-Library, pp 111–128

  • Houseworth JE (2006) An analytical model for solute transport in unsaturated flow through a single fracture and porous rock matrix. Water Resour Res 42(1):W01416. https://doi.org/10.1029/2004WR003770

    Article  Google Scholar 

  • Huang Y, Zhou Z, Wang J, Dou Z (2014) Simulation of groundwater flow in fractured rocks using a coupled model based on the method of domain decomposition. Environ Earth Sci 72:2765–2777

    Google Scholar 

  • Hudson JA, Stephansson O, Andersson J (2005) Guidance on numerical modeling of thermo-hydro-mechanical coupled processes for performance assessment of radioactive waste repositories. Int J Rock Mech Min Sci 42:850–870

    Google Scholar 

  • Javadi M, Sharifzadeh M, Shahriar K (2010) A new geometrical model for non-linear fluid flow through rough fractures. J Hydrol 389(1):18–30

    Google Scholar 

  • Ju Y, Zhang QG, Yang YM, Xie HP, Gao F, Wang HJ (2013) An experimental investigation on the mechanism of fluid flow though single rough fracture of rock. Sci China Technol Sci 43(10):1144–1154

    Google Scholar 

  • Kumar GS (2014) Mathematical modeling of groundwater flow and solute transport in saturated fractured rock using a dual-porosity approach. J Hydrol Eng 19(12). https://doi.org/10.1061/(ASCE)HE.1943-5584.0000986

  • Lee SH, Lee KK, Yeo IW (2014) Assessment of the validity of stokes and Reynolds equations for fluid flow through a rough-walled fracture with flow imaging. Geophys Res Lett 41(13):4578–4585

    Google Scholar 

  • Levasseur S, Charlier R, Frieg B, Collin F (2010) Hydro-mechanical modelling of the excavation damaged zone around an underground excavation at Mont Terri Rock Laboratory. Int J Rock Mech Min Sci 47(3):414–425

    Google Scholar 

  • Li B, Jiang Y, Koyama T, Jing L, Tanabashi Y (2008a) Experimental study of the hydromechanical behavior of rock joints using a parallel-plate model containing contact areas and artificial fractures. Int J Rock Mech Min 45(3):362–375

    Google Scholar 

  • Li B, Liu R, Jiang Y (2016) Influences of hydraulic gradient, surface roughness, intersecting angle, and scale effect on nonlinear flow behavior at single fracture intersections. J Hydrol 538:440–453

    Google Scholar 

  • Li CL, Shen ZZ, Zhao J, Guo YL (2018a) Research and application on double medium seepage hydraulic characteristics test device, rock. Soil Mech 34(08):2421–2429

    Google Scholar 

  • Li JW, Cherubini C, Galindo SAT, Li Z, Pastore N, Li L (2018b) Laboratory investigation of flow paths in 3D self-affine fractures with lattice Boltzmann simulations. Energies 11:168. https://doi.org/10.3390/en11010168

    Article  Google Scholar 

  • Li P, Lu W, Long Y, Yang Z, Li J (2008b) Seepage analysis in a fractured rock mass: the upper reservoir of Pushihe pumped-storage power station in China. Eng Geol 97(1):53–62

    Google Scholar 

  • Liu JS, Sheng JC, Polak A, Elsworth D, Yasuhara H, Grader A (2006) A fully-coupled hydrological-mechanical-chemical model for fracture sealing and preferential opening. Int J Rock Mech Min 43(1):23–36

    Google Scholar 

  • Louis C (1969) A study of groundwater flow in jointed rock and its influence on the stability of rock masses. Rock Mech Res Rep 10, Imperial College, London

  • Maleki MR (2018) Groundwater seepage rate (GSR): a new method for prediction of groundwater inflow into jointed rock tunnels. Tunn Undergr Space Technol 71(1):505–517

    Google Scholar 

  • Miao XX, Li SC, Chen ZQ (2009) Bifurcation and catastrophe of seepage flow system in broken rock. Minist Sci Technol 19(1):1–7

    Google Scholar 

  • Molinero J, Samper J, Juanes R (2002) Numerical modeling of the transient hydrogeological response produced by tunnel construction in fractured bedrocks. Eng Geol 64(4):369–386

    Google Scholar 

  • Nazridoust K, Ahmadi G, Smith DH (2006) A new friction factor correlation for laminar, single-phase flows though rock fractures. J Hydrol 329(1–2):315–328

    Google Scholar 

  • Pan JB, Lee CC, Lee CH, Yeh HF, Lin HI (2010) Application of fracture network model with crack permeability tensor on flow and transport in fractured rock. Eng Geol 116(1):166–177

    Google Scholar 

  • Qian C, Huang B, Wang Y, Wu M (2012) Water seepage flow in concrete. Constr Build Mater 35:491–496

    Google Scholar 

  • Qian J, Zhan H, Zhao W, Sun F (2005) Experimental study of turbulent unconfined groundwater flow in a single fracture. J Hydrol 311(1–4):134–142

    Google Scholar 

  • Qian J, Zhan H, Zhao W, Guan H (2011) Experimental study of the effect of roughness and Reynolds number on fluid flow in rough walled single fractures: a check of local cubic law. Hydrol Process 25(4):614–622

    Google Scholar 

  • Qian X, Xia CC, Gui Y, Zhuang XQ, Yu QF (2019) Study on flow regimes and seepage models through open rough-walled rock joints under high hydraulic gradient. Hydrogeol J 27:1329–1343

    Google Scholar 

  • Ranjith PG, Viete DR (2011) Applicability of the ‘cubic law’ for non-Darcian fracture flow. J Pet Sci Eng 78(2):321–327

    Google Scholar 

  • Ren F, Ma G, Fu G, Zhang K (2015) Investigation of the permeability anisotropy of 2D fractured rock masses. Eng Geol 196:171–182

    Google Scholar 

  • Rong G, Yang J, Cheng L, Zhou CB (2016) Laboratory investigation of nonlinear flow characteristics in rough fractures during shear process. J Hydrol 541:1385–1394

    Google Scholar 

  • Rong G, Hou D, Yang J, Cheng L, Zhou CB (2017) Experimental study of flow characteristics in non-mated rock fractures considering 3D definition of fracture surfaces. Eng Geol 220:152–163

    Google Scholar 

  • Romm ES (1966) Flow characteristics of fractured rocks (in Russian). Nedra, Moscow

    Google Scholar 

  • Shen ZZ, Chen F, Zhao J (2008) Experimental study on seepage characteristics of the intersection of tubular karst passage and fissure. J Hydraul Eng 53(2):137–145

    Google Scholar 

  • Skjetne E, Hansen A, Gudmundsson JS (1999) High-velocity flow in a rough fracture. J Fluid Mech 383:1–28

    Google Scholar 

  • Tzelepis V, Moutsopoulos KN, Papaspyros JNE, Tsihrintzis VA (2015) Experimental investigation of flow behavior in smooth and rough artificial fractures. J Hydrol 521:108–118

    Google Scholar 

  • Vafakhah M (2013) Comparison of cokriging and adaptive neuro-fuzzy inference system models for suspended sediment load forecasting. Arabian J Geosci 6(8):3003–3018

    Google Scholar 

  • Wang KA, Sun WC (2018) A multiscale multi-permeability poroplasticity model linked by recursive homogenizations and deep learning. Comput Method Appl Mech Eng 334:337–380

    Google Scholar 

  • Wu JH, Chen JH, Lu CW (2013) Investigation of the Hsien-du-Shan landslide caused by typhoon Morakot at Kaohsiung, Taiwan. Int J Rock Mech Min 60:148–159

    Google Scholar 

  • Xiong X, Li B, Jiang Y, Koyama T, Zhang C (2011) Experimental and numerical study of the geometrical and hydraulic characteristics of a single rock fracture during shear. Int J Rock Mech Min Sci 48(8):1292–1302

    Google Scholar 

  • Yan X, Lin W, Wu SH, Yuan H, Wang ZJ (2015) Seepage analysis of the fractured rock mass in the foundation of the main dam of the Xiaolangdi water control project. Environ Earth Sci 74:4453–4468

    Google Scholar 

  • Zhang W, Dai BB, Liu Z, Zhou CY (2017) Modeling free-surface seepage flow in complicated fractured rock mass using a coupled RPIM-FEM method. Transp Porous Med 117:443–463

    Google Scholar 

  • Zhang WQ, Zhou HT, Guo WH (2019a) Experimental study on seepage characteristics of fractured rock mass and its electrical response. J Hydrol Eng 24(7):04019017. https://doi.org/10.1061/(ASCE)HE.1943-5584.0001796

    Article  Google Scholar 

  • Zhang Y, Zhang S, Wei G, Wei X, Jin L, Xu K (2019b) Water transport in unsaturated cracked concrete under pressure. Adv Civ Eng Article ID 4504892. https://doi.org/10.1155/2019/4504892

  • Zhang Z, Nemick J, Qiao Q, Geng XY (2015) A model for water flow though rock fractures based on friction factor. Rock Mech Rock Eng 48(2):559–571

    Google Scholar 

  • Zhou JQ, Hu SH, Chen YF, Wang M, Zhou CB (2016) The friction factor in the Forchheimer equation for rock fractures. Rock Mech Rock Eng 49(8):3055–3068

    Google Scholar 

  • Zimmerman RW, Al-Yaarubi A, Pain CC, Grattoni CA (2004) Non-linear regimes of fluid flow in rock fractures. Int J Rock Mech Min Sci 41:163–169

    Google Scholar 

  • Zimmerman RW, Bodvarsson GS (1996) Hydraulic conductivity of rock fractures. Transp Porous Media 23(1):1–30

    Google Scholar 

  • Zoorabadi M, Saydam S, Timms W, Hebblewhite B (2015) Non-linear flow behavior of rough fractures having standard JRC profile. Int J Rock Mech Min 76:192–199

    Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the help received from Chenliang Li, senior engineer of Haihe River Water Conservancy Commission.

Funding

This work was supported by the National Natural Science Foundation of China (No. 51609073), the Fundamental Research Funds for the Central Universities (No. 2018B11514), the Natural Science Foundation of Jiangsu Province (BK20200288), the Open Program of Safety and Disaster Prevention Engineering Technology Research Center of the Ministry of Water Resources (2020003), and the Priority Academic Program Development of Jiangsu Higher Education Institutions (YS11001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Lei Gan or Zhenzhong Shen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gan, L., Shen, Z. & Xiao, M. Experimental investigation of seepage characteristics in porous rocks with a single fracture. Hydrogeol J 28, 2933–2946 (2020). https://doi.org/10.1007/s10040-020-02224-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02224-9

Keywords

Navigation