Skip to main content
Log in

Evaluation of antimicrobial properties of a novel synthesized nanometric delafossite

  • Bacterial and Fungal Pathogenesis - Research Paper
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Antibiotics and other antimicrobial compounds are the backbone of clinical medicine. Antimicrobial resistance can cause serious diseases to man. Nanotechnology can improve therapeutic potential of medicinal molecules and related agents. Widespread application of antibiotics and other antimicrobial compounds led to development of multidrug-resistant microbes, so there is need to develop novel therapeutic agents. Novel synthesized nanometric delafossite was assayed against two Gram-positive bacteria (Staphylococcus aureus and Micrococcus luteus), two Gram-negative bacteria (Escherichia coli and Klebsiella pneumoniae), four opportunistic fungi (Aspergillus flavus, A. fumigatus, A. niger, and Fusarium solani), and four Candida species (C. albicans, C. parapsilosis, C. krusei, and C. tropicalis) using diffusion assay method. The minimum inhibitory concentration (MIC) of the novel synthesized nanometric delafossite was determined using the dilution method. The assayed compounds showed different degrees of antifungal and antibacterial activities, depending on the annealing temperature of preparation of these compounds. Compounds prepared at room temperature showed greater antimicrobial activities than those prepared at higher temperatures. The antimicrobial activity depends also on the susceptibility of the test microbe.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. World Health Organization, Antimicrobial Resistance (Geneva, Switzerland: World Health Organization, updated April 2015)

  2. Hsueh PR (2010) New Delhi metallo-β-lactamase-1 (NDM-1): an emerging threat among Enterobacteriaceae. J Formos Med Assoc 109(10):685–687

    CAS  PubMed  Google Scholar 

  3. Fattah KMAE, Gamal AN, Ibrahim SF, Mohamed ELMG, Saleh AP (2017) Investigation of the efficacy of synthesized silver and zinc oxide nanoparticles against multi-drug resistant Gram-negative bacteria clinical isolates. Arch Clin Microbiol 8(5):67–78

    Google Scholar 

  4. Berkow EL, Lockhart SR (2017) Fluconazole resistance in Candida species: a current perspective. Infect Drug Resist 10:237–245

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Wiederhold N (2017) Antifungal resistance: current trends and future strategies to combat. Infection Drug Resistance 10:249–259

    CAS  PubMed  Google Scholar 

  6. Sharafutdinov IS et al (2020) Increasing susceptibility of drug-resistant Candida albicans to fluconazole and terbinafine by 2(5H)-furanone derivative. Molecules 25:642. https://doi.org/10.3390/molecules25030642

    Article  CAS  PubMed Central  Google Scholar 

  7. Lalitha P, Shapiro B, Srinivasan M, Prajna NV, Acharya NR, Fothergill AW, Ruiz J, Chidambaram JD, Maxey KJ, Hong KC, McLeod S, Lietman TM (2007) Antimicrobial susceptibility of Fusarium, Aspergillus, and other filamentous fungi isolated from keratitis. Arch Ophthalmol 125(6):789–793

    CAS  PubMed  Google Scholar 

  8. Nadaroglu H, Alayli GA, Ince S (2017) Synthesis of nanoparticles by green synthesis method. Int J Innov Res Rev 1:6–9 [12]

    Google Scholar 

  9. Ventola CL (2015) The antibiotic resistance crisis. Part 1: causes and threats. Pharm Ther 40:277–283

    Google Scholar 

  10. Holmes AH, Moore LSP, Steinbakk M, Regmi S, Karkey A, Guerin PJ, Piddock LJV (2016) Understanding the mechanisms and drivers of antimicrobial resistance. Lancet 387:176–187

    CAS  PubMed  Google Scholar 

  11. Naqvi SZH, Kiran U, Ali MI, Jamal A, Hameed A, Hameed A, Ahmed S, Ali N (2013) Combined efficacy of biologically synthesized silver nanoparticles and different antibiotics against multidrug- resistant bacteria. Int J Nanomedicine 8:3187–3195

    PubMed  PubMed Central  Google Scholar 

  12. Singh R, Nawale LU, Arkile M, Shedbalkar UU, Wadhwani SA, Sarkar D, Chopade BA (2015) Chemical and biological metal nanoparticles as antimycobacterial agents: a comparative study. I J Anti Mic Ag 46:183–188

    CAS  Google Scholar 

  13. Rashid BZ, Omar RA, Salih SJ (2016) Characterization and antimicrobial efficiency of silver nanoparticles-based reduction method. Int J Curr Microbiol App Sci 5:802–810

    CAS  Google Scholar 

  14. Lu HD, Yang SS, Wilson BK, McManus Chen CV (2017) Nanoparticles targeting of Gram-positive and Gram-negative bacteria for magnetic-based separations of bacterial pathogens. Appl Nanosci 7(3):83–93

    CAS  Google Scholar 

  15. Singh R, Smitha MS, Singh SP (2014) The role of nanotechnology in combating multi-drug resistant bacteria. J Nanosci Nanotechnol 14(7):4745–4756

    CAS  PubMed  Google Scholar 

  16. Cavassin ED, de Figueiredo LF, Otoch JP, Seckler MM, de Oliveira RA, Franco FF, Marangoni V, Zucolloto V, Levin ASS, Costa SF (2015) Comparison of methods to detect the in vitro activity of silver nanoparticles (AgNP) against multidrug resistant bacteria. J Nanobiotech 13(1):64

    Google Scholar 

  17. Wang L, Hu C, Shao L (2017) The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine 12:1227–1249

    CAS  PubMed  PubMed Central  Google Scholar 

  18. Jhamilton JAB, Paredes D, Suarez CIS, Saez RGT (2015) In vitro antifungal activity of silver nanoparticles against fluconazole-resistant Candida species, World J Microbiol Biotechnol 2015 Nov;31(11):1801–1809

  19. Paula MM, Franco CV, Cesar BM, Rodrigues L, Barichello T, Savi GD, Bellato LF, Fiori MA, Silva LD (2009) Synthesis, characterization and antibacterial activity studies of poly-{styrene-acrylic acid} with silver nanoparticles. Mater Sci Eng 29:647–650

    CAS  Google Scholar 

  20. Nangmenyi G, Li X, Mehrabi S, Mintz E, Economy J (2011) Silver-modified iron oxide nanoparticle impregnated fiberglass for disinfection of bacteria and viruses in water. Mater Lett 65:1191–1193

    CAS  Google Scholar 

  21. Abdelhamid HN, Talib A, Wu H–F (2015) Facile synthesis of water-soluble silver ferrite (AgFeO2) nanoparticles and their biological application as antibacterial agents. RSC Adv 5:34594–34602

    CAS  Google Scholar 

  22. El-Bassuony AAH (2017) Enhancement of structural and electrical properties of novelty nanoferrite materials. J Mater Sci Mater Electron 28:14489–14498

    CAS  Google Scholar 

  23. Abdelsalam HK (2018) Enhancing the structural and spectroscopic properties of Cr3+ ion-doped Ni/Cd/Zn nanoferrite to be applied to industrial applications. J Supercond Nov Magn 31:4063–4077

    CAS  Google Scholar 

  24. El-Bassuony AAH (2018a) Tuning the structural and magnetic properties on Cu/Cr nanoferrite using different rare-earth ions. J Mater Sci: Mater Electron 29:3259–3269

    CAS  Google Scholar 

  25. El-Bassuony AAH (2018b) A comparative study of physical properties of Er and Yb nanophase ferrite for industrial application. J Supercond Nov Magn 31:2829–2840

    CAS  Google Scholar 

  26. El-Bassuony AAH (2020a) Influence of high annealing temperature on structural, magnetic and antimicrobial activity of silver chromite nanoparticles for biomedical applications. J Inorg Organomet Polym

  27. Sayed MA, Abdelsalam HK, El-Bassuony AAH (2020) Antimicrobial activity of novel spinel nanoferrites against pathogenic fungi and bacteria. World J Microbiol Biotechnol 36:25

    CAS  PubMed  Google Scholar 

  28. El-Bassuony AAH, Abdelsalam HK (2019) Tailoring the structural, magnetic and antimicrobial activity of AgCrO2 delafossite via high annealing temperature. J Therm Anal Calorim. https://doi.org/10.1007/s10973-019-08207-7

  29. Páez PL, Bazán CM, Bongiovanni ME, Toneatto J, Albesa I, Becerra MC, Argüello GA (2013) Oxidative stress and antimicrobial activity of chromium (III) and ruthenium ( II ) complexes on Staphylococcus aureus and Escherichia coli. Hindawi Publishing Corporation, BioMed Res

    Google Scholar 

  30. El-Bassuony AAH, Abdelsalam HK (2018a) Synthesis, characterization and antimicrobial activity of AgFeO2 delafossite. J Mater Sci Mater Electron 29:11699–11711

    CAS  Google Scholar 

  31. El-Bassuony AAH, Abdelsalam HK (2018b) Attractive improvement in structural, magnetic, optical, and antimicrobial activity of silver delafossite by Fe/Cr doping. J Supercond Nov Magn J Mater Sci: Mater Electron 14

  32. El-Bassuony AAH, Abdelsalam HK (2018c) Giant exchange bias of hysteresis loops on Cr3+-doped Ag nanoparticles. J Supercond Nov Magn 31:1539–1544

    CAS  Google Scholar 

  33. El-Bassuony AAH, Abdelsalam HK (2019a) Fascinating study of the physical properties of a novel nanometric delafossite for biomedical applications J. Miner., Metals & Mater. Society 71:1866–1873

  34. El-Bassuony AAH, Abdelsalam HK (2020a) Synthesis, characterization, magnetic and antimicrobial properties of silver chromite nanoparticles. J Mater Sci Mater Electron. https://doi.org/10.1007/s10854-020-02924-8

  35. El-Bassuony AAH, Abdelsalam HK (2020b) Impacts of hematite, Bunsenite and maghemite impurities on the physical and antimicrobial properties of silver nanoparticles. Eur Phys J Plus 135:164

    Google Scholar 

  36. El-Bassuony AAH, Abdelsalam HK (2020c) Correlation of heat treatment and the impurities accompanying Ag nanoparticles. Eur Phys J Plus 135:66. https://doi.org/10.1140/epjp/s13360-019-00025-y

    Article  CAS  Google Scholar 

  37. El-Bassuony AAH, Abdelsalam HK (2017) Modification of AgFeO2 by double nanometric delafossite to be suitable as energy storage in solar cell. J Alloys Compd 726:1106–1118

    CAS  Google Scholar 

  38. El-Bassuony AAH, Abdelsalam HK (2018d) Enhancement of AgCrO2 by double nanometric delafossite to be applied in many technological applications. J Mater Sci: Mater Electron 29:5401–5412

    CAS  Google Scholar 

  39. El-Bassuony AAH (2020b) Effect of Al addition on structural, magnetic, and antimicrobial properties of Ag nanoparticles for biomedical applications. JOM 72:3. https://doi.org/10.1007/s11837-019-03784-2

    Article  CAS  Google Scholar 

  40. Raper KB, Fennell PI (1965) The genus Aspergillus. Williama and Wlkins, Baltimore, pp 33–111

    Google Scholar 

  41. Moubasher AH (1993) Soil fungi in Qatar and other Arab countries. In: The Scientific and Applied Research Center. University of Qatar, Doha

    Google Scholar 

  42. Maadon SN, Wakid SA, Zainudin II, Rusli LS, Mohdzan MS, Hasan N, NOR’AISHAH Abushah N & Rohani ER. (2018) Isolation and identification of endophytic fungi from UiTM Reserve Forest, Negeri Sembilan. Sains Malaysiana 47(12):3025–3030

    CAS  Google Scholar 

  43. Holt JG, Krieg NR, Sneath PHA, Staley JT, Williams ST (1994) Genus Acetobacter and Gluconobacter. Bergey’s manual of determinative bacteriology. 9th edn. Williams and Wilkens, MD USA 14:668–675

  44. Saadabi AMA, Ali NM, Mohammed HI, Alsafi FN, Mustafa HB (2012) An in vitro antimicrobial activity of Calotropis procera (Ait). R Br extracts on certain groups of pathogenic microorganisms. Res J Med Sci 6(1):13–17

    Google Scholar 

  45. Pershin GN (1971) Methods of the experimental chemotherapy. Meditsina, Moskwa, p 103

    Google Scholar 

  46. Duncan DB (1955) Multiple range and multiple. F-test Biom 11(1):1–42

  47. Tahir D, Lee EK, Tham TT, Oh SK, Kang HJ, Hua J, Heo S, Park JC, Chung JG, Lee JC (2009) Band alignment of atomic layer deposited (ZrO2)x(SiO2)1-x gate dielectrics on Si (100). Appl Phys Lett 94:212902

    Google Scholar 

  48. Panácˇek A, Kolárˇ M, Vecˇerˇová R, Prucek R, Soukupová J, Kryštof V, Hamal P, Zborˇil R, Kvítek L (2009) Antifungal activity of silver nanoparticles against Candida spp. Biomaterials 30:6333–6340

    Google Scholar 

  49. Gutierrez FM, Olive PL, Banuelos A, Orrantia E, Nino N, Sanchez EM, Ruiz F, Bach H, Av-Gay Y (2010) Nanomed Nanotechnol Biol Med 6:681

    Google Scholar 

  50. Maklad MH, Shash NM, Abdelsalam HK (2014) Structural and magnetic properties of nanograined Ni0 .7 − y Zn0.3 CayFe2O4 spinels. Eur Phys J Appl Phys 66:30402. https://doi.org/10.1051/epjap/2014130573

  51. Wani AH, Shah MA (2012) J Appl Pharm Sci 2:40

    Google Scholar 

  52. Kanhed P, Birla S, Gaikwad S, Gade A, Seabra AB, Rubilar O, Duran N, Rai M (2014) In vitro antifungal efficacy of copper nanoparticles against selected crop pathogenic fungi. Mater Lett 115:13–17

    CAS  Google Scholar 

  53. Ezema FI, Nwankwo UOA (2010) Effect of annealing temperature on the the structural and optical properties of zinc oxide (ZnO) nanocrystals prepared by sol gel. Digest J Nanomater Biostruct 5(4):981–988

    Google Scholar 

  54. Hafiz MM, El-Kabany N, Kotb HM, Bakier YM (2015) Annealing effects on structural and optical properties of Ge10Sb30Se60 thin film. Int J Thin Fil Sci Tec 4(3):163–171

    Google Scholar 

  55. Mallika AN, Ramachandra A, Reddy K, Reddy V (2015) Annealing effects on the structural and optical properties of ZnO nanoparticles with PVA and CA as chelating agents. J Adv Ceramics, Eramics 4(2):123–129

    CAS  Google Scholar 

  56. Talal S, Ali AF (2015) Effect of zinc oxide nanoparticles on Candida albicans of human saliva (in vitro study). Eur J Med 10(4):235–244

    Google Scholar 

  57. Bharamagoudar RC, Patil AS, Vijay SNM, Laxmi MK, Kankanawadi B (2018) Magnetic and antibacterial studies of nanoferrites prepared by self propagating high-temperature synthesis route. Acta Chemica IASI 26(2):249–262

    CAS  Google Scholar 

  58. Clinical and Laboratory Standards Institute (2013) Performance standards for antimicrobial susceptibility testing; twenty-third informational supplement CLSI document M100-S23. CLSI, Wayne

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asmaa A. H. El-Bassuony.

Ethics declarations

This article does not contain any studies with human participants or animals performed by the authors.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Fernando R. Pavan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sayed, M.A., El-Bassuony, A.A.H. & Abdelsalam, H.K. Evaluation of antimicrobial properties of a novel synthesized nanometric delafossite. Braz J Microbiol 51, 1475–1482 (2020). https://doi.org/10.1007/s42770-020-00366-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00366-2

Keywords

Navigation