Skip to main content

Advertisement

Log in

Molecular characterization of methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolates from human milk samples in Brazil

  • Clinical Microbiology - Short Communication
  • Published:
Brazilian Journal of Microbiology Aims and scope Submit manuscript

Abstract

Human milk is the best nutrient for infants. The donor human milk is stored in a milk bank before pasteurization. However, the human milk is not sterile and could be colonized with different types of bacteria. Many studies have shown S. aureus to be the most prevalent potential pathogen detected in human milk. This study characterized 22 methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolates from raw human milk for the presence of virulence genes and agr type. Moreover, the genotypic as identified characterization was realized. The presence of virulence genes sei, seg, sec, seh, and etb was identified in resistant and sensitive strains. We observed the predominance of agr type II. The presence of SCCmec IV (67%, 4/6) and V (33%, 2/6) characterized resistant strains as CA-MRSA. Endemic lineages detected (ST1635/CC5-t002, ST5/CC5-t002, ST72/CC5-t126, ST1/CC1-t127, ST45/CC45-t065, and ST398/t1451) could be related to epidemic clones, such as USA800/ST5, USA700/ST72, USA400/ST1, USA600/ST45, and ST398. This study made it possible to understand the characteristics of virulence and clonality of some strains that circulate in breast milk in our region. The discovery of human milk colonization by MSSA and MRSA strains with molecular characteristics similar to infectious clones spread globally demonstrates the importance of monitoring strains that can spread and cause serious infections.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

References

  1. Morales Y, Schanler RJ (2007) Human milk and clinical outcomes in VLBW infants: how compelling is the evidence of benefit? Semin Perinatol 31(2):83–88. https://doi.org/10.1053/j.semperi.2007.02.002

    Article  PubMed  Google Scholar 

  2. Mosca F, Giannì ML (2017) Human milk: composition and health benefits. Pediatr Med Chirurgica 39(2):155. https://doi.org/10.4081/pmc.2017.155

    Article  Google Scholar 

  3. Kadi H, Lamireau D, Bouncer H, Madhkour I, Madden I, Enaud R, Renesme L, Lamireau T (2020) Satisfaction of mothers regarding human milk donation. Archiv Pediatr 27(4):202–205. https://doi.org/10.1016/j.arcped.2020.03.005

    Article  CAS  Google Scholar 

  4. Haiden N, Ziegler EE (2016) Human milk banking. Ann Nutr Metab 69(suppl 2):7–15. https://doi.org/10.1159/000452821

    Article  Google Scholar 

  5. Almutawif Y, Hartmann B, Lloyd M, Lai CT, Rea A, Geddes D (2019) Staphylococcus aureus enterotoxin production in raw, holder-pasteurized, and ultraviolet-C-treated donated human Milk. Breastfeed Med 14(4):262–270. https://doi.org/10.1089/bfm.2018.0217

    Article  PubMed  Google Scholar 

  6. Blackshaw K, Valtchev P, Koolaji N, Berry N, Schindeler A, Dehghani F, Banati RB (2020) The risk of infectious pathogens in breast-feeding, donated human milk and breast milk substitutes. Public Health Nutr:1–16. https://doi.org/10.1017/s1368980020000555

  7. Chen PW, Lin YL, Huang MS (2018) Profiles of commensal and opportunistic bacteria in human milk from healthy donors in Taiwan. J Food Drug Anal 26(4):1235–1244. https://doi.org/10.1016/j.jfda.2018.03.004

    Article  PubMed  Google Scholar 

  8. Almutawif Y, Hartmann B, Lloyd M, Erber W, Geddes D (2017) A retrospective audit of bacterial culture results of donated human milk in Perth, Western Australia. Early Hum Dev 105:1–6. https://doi.org/10.1016/j.earlhumdev.2016.12.011

    Article  PubMed  Google Scholar 

  9. Novak FR, Almeida JA, Warnken MB, Ferreira-Carvalho BT, Hagler AN (2000) Methicillin-resistant Staphylococcus aureus in human milk. Mem Inst Oswaldo Cruz 95(1):29–33

    Article  CAS  Google Scholar 

  10. Chen Z, Pan WG, Xian WY, Cheng H, Zheng JX, Hu QH, Yu ZJ, Deng QW (2016) Identification of infantile diarrhea caused by breast milk-transmitted Staphylococcus aureus infection. Curr Microbiol 73(4):498–502. https://doi.org/10.1007/s00284-016-1088-7

    Article  CAS  PubMed  Google Scholar 

  11. Machuca MA, Sosa LM, González CI (2013) Molecular typing and virulence characteristic of methicillin-resistant Staphylococcus aureus isolates from pediatric patients in Bucaramanga, Colombia. PLoS One 8(8):e73434. https://doi.org/10.1371/journal.pone.0073434

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Horváth A, Dobay O, Sahin-Tóth J, Juhász E, Pongrácz J, Iván M, Fazakas E, Kristóf K (2020) Characterisation of antibiotic resistance, virulence, clonality and mortality in MRSA and MSSA bloodstream infections at a tertiary-level hospital in Hungary: a 6-year retrospective study. Ann Clin Microbiol Antimicrob 19(1):17. https://doi.org/10.1186/s12941-020-00357-z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Monaco M, Pimentel de Araujo F, Cruciani M, Coccia EM, Pantosti A (2017) Worldwide epidemiology and antibiotic resistance of Staphylococcus aureus. Curr Top Microbiol Immunol 409:21–56. https://doi.org/10.1007/82_2016_3

    Article  CAS  PubMed  Google Scholar 

  14. de Almeida JB, de Carvalho SP, de Almeida AL, Campos GB, Oliveira MV, Timenetsky J, Marques LM (2014) Detection, antibiotic resistance, and pathogenicity of staphylococci in samples from a Brazilian human milk bank. Breastfeed Med 9(10):557–558. https://doi.org/10.1089/bfm.2014.0046

    Article  PubMed  Google Scholar 

  15. Becker K, Roth R, Peters G (1998) Rapid and specific detection of toxigenic Staphylococcus aureus: use of two multiplex PCR enzyme immunoassays for amplification and hybridization of staphylococcal enterotoxin genes, exfoliative toxin genes, and toxic shock syndrome toxin 1 gene. J Clin Microbiol 36(9):2548–2553

    Article  CAS  Google Scholar 

  16. Lina G, Piémont Y, Godail-Gamot F, Bes M, Peter MO, Gauduchon V, Vandenesch F, Etienne J (1999) Involvement of Panton-Valentine leukocidin-producing Staphylococcus aureus in primary skin infections and pneumonia. Clin Infect Dis 29(5):1128–1132. https://doi.org/10.1086/313461

    Article  CAS  PubMed  Google Scholar 

  17. Rosec JP, Gigaud O (2002) Staphylococcal enterotoxin genes of classical and new types detected by PCR in France. Int J Food Microbiol 77(1–2):61–70. https://doi.org/10.1016/s0168-1605(02)00044-2

    Article  CAS  PubMed  Google Scholar 

  18. Gilot P, Lina G, Cochard T, Poutrel B (2002) Analysis of the genetic variability of genes encoding the RNA III-activating components Agr and TRAP in a population of Staphylococcus aureus strains isolated from cows with mastitis. J Clin Microbiol 40(11):4060–4067. https://doi.org/10.1128/jcm.40.11.4060-4067.2002

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Boye K, Bartels MD, Andersen IS, Møller JA, Westh H (2007) A new multiplex PCR for easy screening of methicillin-resistant Staphylococcus aureus SCCmec types I-V. Clin Microbiol Infect 13(7):725–727. https://doi.org/10.1111/j.1469-0691.2007.01720.x

    Article  CAS  PubMed  Google Scholar 

  20. Vivoni AM, Santos KR, de-Oliveira MP, Giambiagi-deMarval M, Ferreira AL, Riley LW, Moreira BM (2005) Mupirocin for controlling methicillin-resistant Staphylococcus aureus: lessons from a decade of use at a university hospital. Infect Control Hosp Epidemiol 26(7):662–667. https://doi.org/10.1086/502599

    Article  PubMed  Google Scholar 

  21. Enright MC, Day NP, Davies CE, Peacock SJ, Spratt BG (2000) Multilocus sequence typing for characterization of methicillin-resistant and methicillin-susceptible clones of Staphylococcus aureus. J Clin Microbiol 38(3):1008–1015

    Article  CAS  Google Scholar 

  22. Harmsen D, Claus H, Witte W, Rothgänger J, Claus H, Turnwald D, Vogel U (2003) Typing of methicillin-resistant Staphylococcus aureus in a university hospital setting by using novel software for spa repeat determination and database management. J Clin Microbiol 41(12):5442–5448. https://doi.org/10.1128/jcm.41.12.5442-5448.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Dinges MM, Orwin PM, Schlievert PM (2000) Exotoxins of Staphylococcus aureus. Clin Microbiol Rev 13(1):16–34, table of contents. https://doi.org/10.1128/cmr.13.1.16-34.2000

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Benito D, Lozano C, Jiménez E, Albújar M, Gómez A, Rodríguez JM, Torres C (2015) Characterization of Staphylococcus aureus strains isolated from faeces of healthy neonates and potential mother-to-infant microbial transmission through breastfeeding. FEMS Microbiol Ecol 91(3). https://doi.org/10.1093/femsec/fiv007

  25. Seidl K, Leemann M, Palheiros Marques M, Rachmühl C, Leimer N, Andreoni F, Achermann Y, Zinkernagel AS (2017) High level methicillin resistance correlates with reduced Staphylococcus aureus endothelial cell damage. Int J Med Microbiol 307(1):11–20. https://doi.org/10.1016/j.ijmm.2016.11.009

    Article  CAS  PubMed  Google Scholar 

  26. Rudkin JK, Edwards AM, Bowden MG, Brown EL, Pozzi C, Waters EM, Chan WC, Williams P, O’Gara JP, Massey RC (2012) Methicillin resistance reduces the virulence of healthcare-associated methicillin-resistant Staphylococcus aureus by interfering with the agr quorum sensing system. J Infect Dis 205(5):798–806. https://doi.org/10.1093/infdis/jir845

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Novak FR, Da Silva AV, Hagler AN, Figueiredo AMS (2000) Contamination of expressed human breast milk with an epidemic multiresistant Staphylococcus aureus clone. J Med Microbiol 49(12):1109–1117. https://doi.org/10.1099/0022-1317-49-12-1109

    Article  CAS  PubMed  Google Scholar 

  28. Caboclo RM, Cavalcante FS, Iorio NL, Schuenck RP, Olendzki AN, Felix MJ, Chamon RC, dos Santos KR (2013) Methicillin-resistant Staphylococcus aureus in Rio de Janeiro hospitals: dissemination of the USA400/ST1 and USA800/ST5 SCCmec type IV and USA100/ST5 SCCmec type II lineages in a public institution and polyclonal presence in a private one. Am J Infect Control 41(3):e21–e26. https://doi.org/10.1016/j.ajic.2012.08.008

    Article  CAS  PubMed  Google Scholar 

  29. Andrade-Figueiredo M, Leal-Balbino TC (2016) Clonal diversity and epidemiological characteristics of Staphylococcus aureus: high prevalence of oxacillin-susceptible mecA-positive Staphylococcus aureus (OS-MRSA) associated with clinical isolates in Brazil. BMC Microbiol 16(1):115. https://doi.org/10.1186/s12866-016-0733-4

    Article  PubMed  PubMed Central  Google Scholar 

  30. Vieira MA, Minamisava R, Pessoa-Júnior V, Lamaro-Cardoso J, Ternes YM, Andre MC, Sgambatti S, Kipnis A, Andrade AL (2014) Methicillin-resistant Staphylococcus aureus nasal carriage in neonates and children attending a pediatric outpatient clinics in Brazil. Brazilian J Infect Dis 18(1):42–47. https://doi.org/10.1016/j.bjid.2013.04.012

    Article  Google Scholar 

  31. McDougal LK, Steward CD, Killgore GE, Chaitram JM, McAllister SK, Tenover FC (2003) Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J Clin Microbiol 41(11):5113–5120. https://doi.org/10.1128/jcm.41.11.5113-5120.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Casey JA, Shopsin B, Cosgrove SE, Nachman KE, Curriero FC, Rose HR, Schwartz BS (2014) High-density livestock production and molecularly characterized MRSA infections in Pennsylvania. Environ Health Perspect 122(5):464–470. https://doi.org/10.1289/ehp.1307370

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Verkade E, Kluytmans J (2014) Livestock-associated Staphylococcus aureus CC398: animal reservoirs and human infections. Infect Genet Evol 21:523–530. https://doi.org/10.1016/j.meegid.2013.02.013

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the Human Milk Bank of Esau Matos Municipal Hospital, for allowing this study and AcademicEnglishSolutions.com for proofreading.

Funding

This study was supported by Programa de apoio a pesquisadores emergentes da UFBA (UFBA/PRODOC 02/2011) and financed in part by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior Brasil (CAPES) - Finance code 001.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lucas M. Marques.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Responsible Editor: Ana Lucia da Costa Darini.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Almeida, J.B., de Carvalho, S.P., da Silva, L.S.C. et al. Molecular characterization of methicillin-resistant and methicillin-sensitive Staphylococcus aureus isolates from human milk samples in Brazil. Braz J Microbiol 51, 1813–1817 (2020). https://doi.org/10.1007/s42770-020-00367-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42770-020-00367-1

Keywords

Navigation