Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Detailed electro-dynamic model of an ultra-fast disconnector including the failure mode

Ultra-fast disconnector (UFD) is a key component of hybrid DC circuit breakers and it is also studied as the main switch in some DC grid topologies. A UFD model suitable for DC grid studies and considering both normal operation and failure mode is presented. The dynamic motion of contacts is analysed in detail and it is concluded that Thomson coil inductances including parasitic parameters play an important role and it is recommended to use finite element modelling. The arcing mode of UFD is repressed using a variable resistance in series with an ideal switch. The variable resistance is calculated analytically based on the instantaneous position of contacts and the circuit conditions. Two different arc models are recommended: for the air-insulated UFD and SF6 UFD, and in each case, two operating regimes should be considered: high and low currents. The UFD model is verified for both normal operation and failure mode using measurements on a 5 kV laboratory UFD and the results show very good matching. The 320 kV SF6 UFD model is evaluated using limited reported results from manufacturers.

References

    1. 1)
      • 5. Grieshaber, W., Dupraz, J., Penache, D., et al: ‘Development and test of a 120 kV direct current circuit breaker’. Proc. CIGRÉ Session, Paris, France, August 2014, pp. 111.
    2. 2)
      • 4. Häfner, J., Jacobson, B.: ‘Proactive hybrid HVDC breakers – a key innovation for reliable HVDC grids’. Proc. CIGRE 2011 Bologna Symp., Bologna, Italy, September 2012, pp. 17.
    3. 3)
      • 8. Ruffing, P., Collath, N., Brantl, C., et al: ‘DC fault control and high-speed switch design for an HVDC network protection based on fault-blocking converters’, IEEE Trans. Power Deliv., 2019, 34, (1), pp. 397406.
    4. 4)
      • 3. CIGRE joined WG A3 and B4.34.: ‘Technical requirements and specifications of state of the art HVDC switching equipment’, CIGRE brochure 683, April 2017.
    5. 5)
      • 13. Ritter, A., Franck, C. M.: ‘Prediction of bus-transfer switching in future HVdc substations’, IEEE Trans. Power Deliv., 2018, 33, (3), pp. 13881397.
    6. 6)
      • 14. Ritter, A., Straumann, U., Franck, C. M.: ‘Novel method for predicting limit performance of bus-transfer switching by disconnectors’, IEEE Trans. Power Deliv., 2017, 32, (5), pp. 22102217.
    7. 7)
      • 2. Jovcic, D., Tang, G., Pang, H.: ‘Adopting circuit breakers for high voltage dc networks: appropriating the vast advantages of dc transmission grids’, IEEE Power Energy Mag., 2019, 17, (4), pp. 8293.
    8. 8)
      • 18. Bissal, A.: ‘Modeling and Verification o Ultrafast Electromechnaical Actuators for HVDC Breakers’, PhD Theiss, KTH, Stockholm, 2015.
    9. 9)
      • 17. Jovcic, D., Azizian Fard, M., Zaja, M.: ‘Failure mode analysis of hybrid DC circuit breakers’. Cigre Int. Colloquium 2019, Johannesburg, South Africa, 1–4 October 2019, p. 12.
    10. 10)
      • 15. Ritter, A., Straumann, U., Franck, C. M.: ‘Improving GIS disconnectors for future HVDC applications’, IEEE Trans. Power Deliv., 2018, 34, (1), pp. 160168.
    11. 11)
      • 23. Ammerman, R. F., Gammon, T., Sen, P. K., et al: ‘DC-Arc Models and incident-energy calculations’, IEEE Trans. Ind. Appl., 2010, 46, (5), pp. 18101819.
    12. 12)
      • 9. Jovcic, D., Lin, W., Nguefeu, S., et al: ‘Low energy protection system for DC grids based on full bridge MMC converters’, IEEE Trans. Power Deliv., 2018, 33, (4), pp. 19341943.
    13. 13)
      • 11. Hedayati, M, Jovcic, D.: ‘Reducing peak current and energy dissipation in hybrid HVDC CBs using disconnector voltage control’, IEEE Trans. Power Deliv., 2018, 33, (4), pp. 20302038.
    14. 14)
      • 25. Yokomizu, Y., Matsumura, T., Henmi, R., et al: ‘Total voltage drops in electrode fall regions of SF6, argon and air arcs in current range from 10 to 20 000 A’, J. Phys. D, Appl. Phys., 1996, 29, (5), pp. 12601267.
    15. 15)
    16. 16)
      • 1. Jovcic, D: ‘High voltage direct current transmission: converters systems and DC grids’ (Wiley, New Jersey, USA, 1, 2nd edn2019).
    17. 17)
      • 20. Olsson, H., Åström, K.J., De Wit, C.C., et al: ‘Friction models and friction compensation’, Eur. J. Control, 1998, 4, (3), pp. 176195.
    18. 18)
      • 21. Li, X., Zou, J., Geng, L., et al: ‘Experiment research on current chopping on zero period of DC vacuum circuit breaker breaking’. 2017 4th Int. Conf. on Electric Power Equipment – Switching Technology (ICEPE-ST), Xi'an, 2017, pp. 389392.
    19. 19)
      • 6. Skarby, P., Steiger, U.: ‘An ultra-fast disconnecting switch for a hybrid HVDC breaker – a technical breakthrough’. Proc. CIGRÉ Session, Alberta, Canada, September 2013, pp. 19.
    20. 20)
      • 22. Paukert, J.: ‘The arc voltage and arc resistance of LV fault arcs’. Proc.7th Int. Symp. Switching Arc Phenom., Lodz, Poland, 1993, pp. 4951.
    21. 21)
      • 16. Lin, W., Jovcic, D., Nguefeu, S., et al: ‘Modelling of high power hybrid DC circuit breaker for grid level studies’, IET Power Electron., 2016, 9, (2), pp. 237246.
    22. 22)
      • 7. Hassanpoor, A., Häfner, J., Jacobson, B.: ‘Technical assessment of load commutation switch in hybrid HVDC breaker’, IEEE Trans. Power Electron., 2015, 30, (1), pp. 53935400.
    23. 23)
      • 24. Koch, D.: ‘SF6 properties and use in MV and HV switchgear’, Schneider Electric, Grenoble, France, 2003.
    24. 24)
      • 26. Wheeler, H.A.: ‘Simple inductance formulas for radio coils’, Proc. of the Institute of Radio Eng., 1928, 16, (10), pp. 139814000.
    25. 25)
      • 19. ABB Schweiz AG.: ‘Fast switch with Thomson coil and damping’, European Patent Application EP 2 546 847 A1, 2013.
    26. 26)
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0387
Loading

Related content

content/journals/10.1049/hve.2019.0387
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address