Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Availability assessment of voltage source converter HVDC grids using optimal power flow-based remedial actions

This study proposes a methodology for assessing the availability of voltage source converter high-voltage direct current (HVDC) grids based on the enumeration methodology of contingency analysis with N − 2 criteria and makes contributions in the computation of remedial actions and the definition and computation of reliability indices applied for HVDC grids. Thus, this study proposes the computation of remedial actions based on an optimal power flow, looking to maintain power exchanges between HVDC and high-voltage alternating current grids, when a contingency occurs on the HVDC grid and converter stations or HVDC lines are out of their operating limits. On the other hand, an HVDC grid has the function of injecting and extracting power from AC interconnected zones, and then traditionally used nodal reliability indices must be modified to indices that reflect the performance of the HVDC network to fulfil its function of interconnection of systems. This study defines two sets of availability indices applicable to HVDC grids: (i) loss of power and energy extracted from the DC grid to the AC zones and (ii) loss of power and energy injected to AC zones from the DC grid. The proposed methodology is applied to perform the availability assessment of the CIGRE B4 DC grid test system and the results are presented.

References

    1. 1)
      • 3. Asplund, G., Barker, C., Baur, U., et al: ‘HVDC grid feasibility study’. CIGRE WG B4-52, Paris, France, April 2013, pp. 133.
    2. 2)
      • 17. Benato, R., Chiarelli, A., Sessa, S.D., et al: ‘Overall availability assessment of HVDC VSC XLPE cable symmetrical monopolar configuration’. AEIT Int. Annual Conf., Cagliari, Italy, September 2017.
    3. 3)
      • 8. Rudion, K., Styczynski, Z.A., Orths, A., et al: ‘Reliability investigations for a DC offshore power system’. Proc. IEEE/PES General Meeting, Vancouver, Canada, July 2013, pp. 14.
    4. 4)
      • 29. Fu, S., Xu, Y., Chen, L., et al: ‘The status and prospects of VSC-HVDC reliability research’. 2016 China Int. Conf. on Electricity Distribution CICED, Xi'an, China, August 2016.
    5. 5)
      • 21. Liu, X., Xia, Y., Dai, R., et al: ‘On-line loss minimization by HVDC dispatch using OPF in EMS’. Proc. IEEE Power & Energy Society General Meeting, Chicago, IL, USA, July 2017, pp. 15.
    6. 6)
      • 2. Migliavacca, G.: ‘Advanced technologies for future transmission grids’ (Springer, London, UK, 2013).
    7. 7)
      • 19. Nikoobakht, A., Aghaei, J., Niknam, T., et al: ‘Towards robust OPF solution strategy for the future AC/DC grids: case of VSC-HVDC-connected offshore wind farms’, IET Renew. Power Gener., 2018, 12, (6), pp. 691701.
    8. 8)
      • 6. Sessa, S.D., Chiarelli, A., Benato, R.: ‘Availability analysis of HVDC-VSC systems: a review’, Energies, 2019, 12, (2703), pp. 122.
    9. 9)
      • 20. Zhang, Y., Gao, K., Han, Z., et al: ‘Multi-objectives OPF of AC-DC systems considering VSC-HVDC integration’. Proc. IEEE PES Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Xi'an, China, October 2016, pp. 929933.
    10. 10)
      • 33. MATLAB: ‘Fmincon’. Available at https://www.mathworks.com/help/optim/ug/fmincon.html, accessed 25 November 2019.
    11. 11)
      • 11. Oh, U., Lee, Y., Choi, J., et al: ‘A study on probabilistic reliability of HVDC expansion planning in South Korea’. IEEE/PES General Meeting, Portland, USA, August 2018.
    12. 12)
      • 15. Camargo, A.F., Rios, M.A.: ‘Reliability data and assessment for HVDC bipolar links’. Proc. IEEE/PES Transmission and Distribution Conf. and Exposition, Denver, USA, April 2018.
    13. 13)
      • 7. Linden, K., Jacobson, B., Bollen, M.H.J., et al: ‘Reliability study methodology for HVDC grids’. Proc. CIGRE Paris Session, paper WG B4-108, Paris, 2010.
    14. 14)
      • 24. Sau-Bassols, J., Zhao, Q., García-González, J., et al: ‘Optimal power flow operation of an interline current flow controller in an hybrid AC/DC meshed grid’, Electr. Power Syst. Res., 2019, 177, p. 105935.
    15. 15)
      • 5. Guo, J., Wang, X., Bie, Z., et al: ‘Reliability modeling and evaluation of VSC-HVDC transmission systems’. Proc. IEEE PES General Meeting Conf. & Exposition, National Harbor, MD, USA, July 2014, pp. 15.
    16. 16)
      • 30. Dong, J., Chen, P.: ‘Reliability evaluation of multi-terminals VSC-HVDC system’, J. Electr. Syst., 2015, 11, (3), pp. 342352.
    17. 17)
      • 25. Gomis-Bellmunt, O., Sau-Bassols, J., Prieto-Araujo, E., et al: ‘Flexible converters for meshed HVDC grids: from flexible AC transmission systems (FACTS) to flexible DC grids’, IEEE Trans. Power Deliv., 2020, 35, pp. 215.
    18. 18)
      • 16. Li, W.: ‘Probabilistic transmission system planning’ (John Wiley & Sons Press, Singapore, 2011).
    19. 19)
      • 9. Contreras-Jiménez, J.S., Rivas-Dávalos, F., Song, J., et al: ‘Multi-state system reliability analysis of HVDC transmission systems using matrix-based system reliability method’, Int. J. Electr. Power Energy Syst., 2018, 100, pp. 265278.
    20. 20)
      • 22. Pizano-Martinez, A., Fuerte-Esquivel, C.R., Ambriz-Perez, H., et al: ‘Modeling of VSC-based HVDC systems for a Newton-Raphson OPF algorithm’, IEEE Trans. Power Syst., 2007, 22, (4), pp. 17941803.
    21. 21)
      • 12. Xie, H., Bie, Z., Li, G.: ‘Reliability-oriented networking planning for meshed VSC-HVDC grids’, IEEE Trans. Power Syst., 2019, 34, (2), pp. 13421351.
    22. 22)
      • 26. Vrana, T.K., Yang, Y.T., Jovcic, D.: ‘The CIGRE B4 DC grid test system’, Electra, 2013, 270, pp. 1019.
    23. 23)
      • 18. Zheng, Z., Wang, Y., Li, C., et al: ‘Reliability model and algorithm research on HVDC system and flexible HVDC system’, J. Eng., 2019, 2019, (16), pp. 26212624.
    24. 24)
      • 10. MacIver, C., Bell, K.R.W., Nedic, D.P.: ‘A reliability evaluation of offshore HVDC grid configuration options’, IEEE Trans. Power Deliv., 2016, 31, (2), pp. 810819.
    25. 25)
      • 13. Beerten, J.: ‘MatACDC-website’. Available at http://www.esat.kuleuven.be/electa/teaching/matacdc/, Accessed 19 November 2019.
    26. 26)
      • 27. Reliability Test System Task Force: ‘IEEE reliability test system’, IEEE Trans. Power Appar. Syst., 1979, PAS-98, (6), pp. 20472054.
    27. 27)
      • 32. Zadkhast, S., Fotuhi-firuzabad, M., Aminifar, F., et al: ‘Reliability evaluation of an HVDC transmission system tapped by a VSC station’, IEEE Trans. Power Deliv., 2010, 25, (3), pp. 19621970.
    28. 28)
      • 14. Beddard, A., Barnes, M.: ‘VSC-HVDC availability analysis’ (The University of Manchester, Manchester, UK, 2011).
    29. 29)
      • 23. Lin, Y., Lin, Z.S., Qiu, L.Q., et al: ‘An improved approach on static security constrained OPF for AC/DC meshed grids with MMC-HVDC’. Proc. IEEE PES Asia-Pacific Power and Energy Engineering Conf. (APPEEC), Xi'an, China, October 2016, pp. 10481054.
    30. 30)
      • 1. Van Hertem, D., Gomis-Bellmunt, O., Liang, J.: ‘HVDC grids for offshore and supergrid on the future’ (IEEE press, John Wiley & Sons, Inc., New Jersey, USA, 2016, 1st edn.).
    31. 31)
      • 4. An, T., Tang, G., Wang, W.: ‘Research and application on multi-terminal and DC grids based on VSC-HVDC technology in China’, High Volt., 2017, 2, (1), pp. 110.
    32. 32)
      • 28. An, W., Mou, M., Wei, C.Z., et al: ‘Reliability evaluation and comparison for different topologies of VSC-HVDC distribution networks using analytical and simulation methods’. 12th IET Int. Conf. on AC and DC Power Transmission, Beijing, China, 2016.
    33. 33)
      • 31. Devi, L., Sai Babu, S., Siva, S.: ‘Analysis and improving reliability indices of VSC-HVDC transmission system tapped by a VSC- station’, Curr. Trends Technol. Sci., 2013, II, (VI), pp. 340346.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2020.0028
Loading

Related content

content/journals/10.1049/hve.2020.0028
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address