Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Feasibility of C3F7CN/CO2 gas mixtures in high-voltage DC GIL: a review on recent advances

With the rise of renewable energy resources, especially offshore wind power plant, the DC transmission concept has attracted more and more attention. The selection of eco-friendly insulating gas, as most critical insulating part of gas-insulated equipment is top priority for developing highly reliable system. Moreover, it is acknowledged that eco-friendly C3F7CN/CO2 gas mixtures have become a potential alternative to SF6 gas due to its excellent performance. This study reviews the basic physical properties of C3F7CN gas/gas mixtures and insulation properties including the gas gap breakdown and surface flashover performance at DC, as well as lightning impulse voltage. Investigation about the gas stability is presented, including the compatibility of gas with solid materials in gas-insulated transmission line (GIL), and the decomposition characteristics under long-term electrical and thermal stresses. The important progress on the charge accumulation characteristics of gas–solid interface in the novel gas environment under DC voltage stress is analysed. Finally, the key issues that need to be paid attention to and further followed through regarding the application of this novel gas in GIL are summarised and put forward. This study hopefully can provide a complete reference for the development of eco-friendly DC gas insulation equipment with C3F7CN/CO2 gas mixtures.

References

    1. 1)
      • 4. Rabie, M., Franck, C.M.: ‘An assessment of eco-friendly gases for electrical insulation to replace the most potent industrial greenhouse gas SF6’, Environ. Sci. Technol., 2018, 52, (2), pp. 369380.
    2. 2)
      • 23. Zhang, T.R., Zhou, W.J., Zheng, Y., et al: ‘Insulation properties of C4F7N/CO2 mixtures under non-uniform electric field’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (6), pp. 17471754.
    3. 3)
      • 61. Li, H., Zheng, Z., Yuan, R., et al: ‘Compatibility between gas and solid materials in gas insulated equipment’, Trans. China Electr. Soc., 2020, 35, (1), pp. 9199, (in Chinese).
    4. 4)
      • 26. Tu, Y.P., Cheng, Y., Wang, C., et al: ‘Insulation characteristics of Fluoronitriles/CO2 gas mixture under DC electric field’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 13241331.
    5. 5)
      • 25. Nechmi, H.E., Beroual, A., Girodet, A., et al: ‘Fluoro- nitriles/CO2 gas mixture as promising substitute to SF6 insulation in high voltage applications’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (5), pp. 25872593.
    6. 6)
    7. 7)
      • 38. Chen, L., Zhang, B.Y., Xiong, J.Y., et al: ‘Decomposition mechanism and kinetics of iso-C4 perfluoronitrile (C4F7N) plasmas’, J. Appl. Phys., 2019, 126, (16), p. 163303.
    8. 8)
      • 32. Pedersen, A.: ‘The effect of surface roughness on breakdown in SF6’, IEEE Trans, Power Appar. Syst., 1975, 94, pp. 17491754.
    9. 9)
      • 28. Tu, Y.P., Ai, X., Cheng, Y., et al: ‘DC breakdown characteristics of C3F7CN/N2 gas mixtures’, Trans. China Electr. Soc., 2018, 33, pp. 51895195, (in Chinese).
    10. 10)
      • 54. Li, Y., Zhang, X., Xiao, S., et al: ‘Insight into the compatibility between C4F7N and silver: experiment and theory’, J. Phys. Chem. Sol., 2019, 126, pp. 105111.
    11. 11)
      • 48. Li, Y., Zhang, X.X., Zhang, J., et al: ‘Thermal decomposition properties of fluoronitriles-N2 gas mixture as alternative gas for SF6’, Ind. Eng. Chem. Res., 2018, 57, (14), pp. 51735182.
    12. 12)
      • 42. Zhang, B.Y., Li, C.W., Xiong, J.Y., et al: ‘Decomposition characteristics of C4F7N/CO2 mixture under AC discharge breakdown’, AIP Adv., 2019, 9, (11), p. 115212.
    13. 13)
      • 33. Li, Y., Zhang, X., Zhang, J., et al: ‘Experimental study on the partial discharge and AC breakdown properties of C4F7N/CO2 mixture’, High Volt., 2019, 4, (1), pp. 1217.
    14. 14)
      • 8. Magier, T., Tenzer, M., Koch, H.: ‘Direct current gas-insulated transmission lines’, IEEE Trans. Power Deliv., 2018, 33, (1), pp. 440446.
    15. 15)
      • 3. Xiao, D.M.: ‘Gas discharge and gas insulation’ (Shanghai Jiao Tong University Press, Shanghai and Springer-Verlag, Berlin, Heidelberg, 2016).
    16. 16)
      • 13. Li, J., Liang, H.C., Du, B.X., et al: ‘Surface functional graded spacer for compact HVDC gaseous insulated system’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (2), pp. 664667.
    17. 17)
      • 52. Kieffel, I.Y., Berteloot, T., Souchal, S., et al: ‘Characteristics of g3 - an alternative to SF6’. CIGRE Winnipeg 2017 Colloquium Study, Committees, D1, Winnipeg, Canada, 2017, p. D152.
    18. 18)
      • 55. Li, Y., Zhang, X., Xiao, S., et al: ‘Insights into the interaction between C4F7N decomposition products and Cu (1 1 1), Ag (1 1 1) surface’, J. Fluor. Chem., 2018, 213, pp. 2430.
    19. 19)
      • 40. Wang, C., Ai, X., Zhang, Y., et al: ‘Decomposition products and formation path of C3F7CN/CO2 mixture with suspended discharge’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (6), pp. 19491955.
    20. 20)
      • 43. Zhou, Y.Y., Li, C.W., Tang, N., et al: ‘Comparison of decomposition by-products of C4F7N/CO2 mixed gas under AC discharge breakdown and partial discharge’. 5th Int. Conf. on Electric Power Equipment – Switching Technology, Kitakyushu, Japan, 2019, pp. 8285.
    21. 21)
      • 18. Yuan, Z.K., Tu, Y.P., Wang, C., et al: ‘Research on liquefaction characteristics of SF6 substitute gases’, J. Electr. Eng. Technol., 2018, 13, pp. 25452552.
    22. 22)
      • 45. Li, Y., Zhang, X.X., Chen, Q., et al: ‘Influence of oxygen on dielectric and decomposition properties of C4F7N-N2-O2 mixture’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (4), pp. 12791286.
    23. 23)
      • 29. Ai, X, Tu, Y.P., Zhang, Y., et al: ‘The effect of electrode surface roughness on the breakdown characteristics of C3F7CN/CO2 gas mixtures’, Electr. Power Energy Syst., 2020, 118, p. 105751.
    24. 24)
      • 15. Preve, C., Lahaye, G., Richaud, M., et al: ‘Hazard study of medium-voltage switchgear with SF6 alternative gas in electrical room’, CIRED-Open Access Proc. J., 2017, 2017, (1), pp. 198201.
    25. 25)
      • 17. Li, Y., Zhang, X., Zhang, J., et al: ‘Assessment on the toxicity and application risk of C4F7N: A new SF6 alternative gas’, J. Hazard. Mater., 2019, 368, pp. 653660.
    26. 26)
      • 41. Li, Y., Zhang, X.X., Xiao, S., et al: ‘Decomposition properties of C4F7N/N2 gas mixture: an environmentally friendly gas to replace SF6’, Ind. Eng. Chem. Res., 2018, 57, (14), pp. 51735182.
    27. 27)
      • 9. Kieffel, Y., Irwin, T., Ponchon, Ph., et al: ‘Green gas to replace SF6 in electrical grids’, IEEE Power Energy Mag., 2016, 14, (2), pp. 3239.
    28. 28)
      • 51. Pohlin, K., Kieffel, Y., Owens, J.: ‘Characteristics of a fluoronitrile/CO2 mixture-an alternative to SF6’. Conf. Int. Des Grands Reseaux, Electriques, D1, Villeurbanne, France, 2016, p. D204.
    29. 29)
      • 64. Fujinami, H., Takuma, T., Yashima, M., et al: ‘Mechanism and effect of DC charge accumulation on SF6 gas insulated spacers’, IEEE Trans. Power Deliv., 1989, 4, (3), pp. 17651772.
    30. 30)
      • 59. Yuan, R., Li, H., Zheng, Z., et al: ‘Experiment on the compatibility between C3F7CN/CO2 gas mixture and epoxy resin used in gas insulated transmission line’, Trans. China Electr. Soc., 2020, 35, (1), pp. 7079, (in Chinese).
    31. 31)
      • 30. Stepanova, O., Rybalchenko, O., Astafiev, A., et al: ‘A morphological study of the changes in the ultrastructure of a bacterial biofilm disrupted by an AC corona discharge in air’, J. Appl. Phys,, 2016, 120, (6), p. 82.
    32. 32)
      • 11. Li, C.Y., Lin, C.J., Chen, G., et al: ‘Field-dependent charging phenomenon of HVDC spacers based on dominant charge behaviors’, Appl. Phys. Lett., 2019, 114, (20), p. 202904.
    33. 33)
      • 67. Nakanishi, K., Yoshioka, A., Arahata, Y., et al: ‘Surface charging on epoxy spacer at DC stress in compressed SF6 gas’, IEEE Trans. Power Appar. Syst., 1983, PAS-102, (12), pp. 39193927.
    34. 34)
      • 71. Zhang, B.Y., Li, X.W., Wang, T.W., et al: ‘Surface charging characteristics of GIL model spacers under DC stress in C4F7N/CO2 gas mixture’, IEEE Trans. Dielectr. Electr. Insul., 2020, 27, (2), pp. 597605.
    35. 35)
      • 58. Xiong, J., Zhang, B., Zhang, Z., et al: ‘Dissociative adsorption of environment-friendly insulating medium C3F7CN on Cu(111) and Al(111) surface: a theoretical evaluation’, Appl. Surf. Sci., 2020, 509, p. 144854.
    36. 36)
      • 36. Zhao, M.Y., Han, D., Rong, W.Q., et al: ‘Analysis of decomposition by-products and its formation mechanism of C4F7N/air mixed gases under AC corona discharge’, High Volt. Eng., 2018, 44, (10), pp. 255258, (in Chinese).
    37. 37)
      • 62. Zheng, Z., Li, H., Zhou, W., et al: ‘Compatibility of eco-friendly insulating medium C3F7CN and sealing material EPDM’, High Volt. Eng., 2020, 46, (1), pp. 335341, (in Chinese).
    38. 38)
      • 66. Cooke, C.M., Trump, J.G.: ‘Post-type support spacers for compressed-gas-insulated cables’, IEEE Trans. Power App. Syst., 1973, PAS 92, (5), pp. 14411447.
    39. 39)
      • 14. 3M: ‘3M™ novec™ 4710 dielectric fluid’. Technical Data, October 2015.
    40. 40)
      • 24. Nechml, H.E., Beroual, A., Girodet, A., et al: ‘Effective ionization coefficients and limiting field strength of fluoronitriles-CO2 mixtures’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (2), pp. 886892.
    41. 41)
      • 34. Li, Z.C., Ding, W.D., Liu, Y.S.: ‘Surface flashover characteristics of the epoxy insulator in C4F7N/CO2 mixtures in the uniform field under AC voltage’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (4), pp. 10651072.
    42. 42)
      • 2. Christophorou, L.G., Olthoff, J.K., VanBrunt, J.R.: ‘Sulfur hexafluoride and the electric power industry’, IEEE Electr. Insul. Mag., 1997, 13, (20), pp. 2024.
    43. 43)
      • 10. Tu, Y.P., Chen, G., Li, C.Y., et al: ‘±100-kV HVDC SF6/N2 gas-insulated transmission line’, IEEE Trans. Power Deliv., 2020, 35, (2), pp. 735744.
    44. 44)
      • 49. Zhang, X.X., Li, Y., Shao, X.J., et al: ‘Influence of oxygen on the thermal decomposition properties of C4F7N-N2-O2 as an eco-friendly gas insulating medium’, ACS Omega, 2019, 4, (20), pp. 1861618626.
    45. 45)
      • 50. Kessler, F., Sarfert-Gast, W., Ise, M., et al: ‘Interaction of low global warming potential gaseous dielectrics with materials of gas-insulated systems’. The 20th Int. Symp. on High Voltage, Engineering, Buenos Aires, Argentina, 2017.
    46. 46)
      • 16. OECD: ‘Guidelines for testing of chemicals: acute oral toxicity’ (OECD Publishing, Paris, 2009).
    47. 47)
      • 20. Zhang, B.Y., Uzelac, N., Cao, Y.: ‘Fluoronitrile/CO2 mixture as an eco-friendly alternative to SF6 for medium voltage switchgears’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 13401350.
    48. 48)
      • 39. Fu, Y.W., Wang, X.X., Wang, X.H., et al: ‘Theoretical study on decomposition pathways and reaction rate constants of C4F7N with O atom’, J. Phys. D, Appl. Phys., 2019, 53, (10), p. 105202.
    49. 49)
      • 47. Li, C., Zhang, B.Y., Yang, T., et al: ‘Thermal decomposition characteristics and kinetic analysis of C4F7N/CO2 gas mixture’, J. Phys. D: Appl. Phys., 2019, 53, (5), p. 055502.
    50. 50)
    51. 51)
      • 6. De Urquijo, J., Mitrani, A., Ruíz-Vargas, G., et al: ‘Limiting field strength and electron swarm coefficients of the CF3I-SF6 gas mixture’, J. Phys. D, Appl. Phys., 2011, 44, p. 342001.
    52. 52)
      • 53. Zhang, X., Li, Y., Chen, D., et al: ‘Dissociative adsorption of environment-friendly insulating medium C3F7CN on Cu(111) and Al(111) surface’, Appl. Surf. Sci., 2018, 434, pp. 549560.
    53. 53)
      • 68. Ootera, H., Nakanishi, K.: ‘Analytical method for evaluating surface charge distribution on a dielectric from capacitive probe measurement- application to a cone-type spacer in ±500 kV DC-GIS’, IEEE Trans. Power Deliv, 1988, 3, (1), pp. 165172.
    54. 54)
      • 56. Li, Y., Zhang, X., Chen, Q., et al: ‘Study on the thermal interaction mechanism between C4F7N-N2 and copper, aluminum’, Corros. Sci., 2019, 153, pp. 3246.
    55. 55)
      • 57. Li, Y., Zhang, X., Zhang, J., et al: ‘Thermal compatibility between perfluoroisobutyronitrile-CO2 gas mixture with copper and aluminum switchgear’, IEEE Access, 2019, 7, pp. 1979219800.
    56. 56)
      • 70. Chen, G., Tu, Y.P., Wu, S.C., et al: ‘Intrinsic hetero-polar surface charge phenomenon in environmental friendly C3F7CN/CO2 gas mixture’, J. Appl. Phys., 2020, 53, p. 18LT03.
    57. 57)
      • 46. Li, Y., Zhang, X.X., Zhang, J., et al: ‘Study on the thermal decomposition characteristics of C4F7N-CO2 mixture as eco- friendly gas insulating medium’, High Volt., 2020, 5, (1), pp. 4652.
    58. 58)
      • 5. Cigre Working Group D1. 51: ‘Dry-air, N2, CO2 and N2/SF6 mixture for gas-insulated systems’. 2018.
    59. 59)
      • 72. Xiao, M., Li, X., Du, B.X., et al: ‘Electronic and optical properties of C-doped BN nanotubes by adsorption of typical decomposition products of C3F7CN gas’, Appl. Surf. Sci., 2019, 491, pp. 698706.
    60. 60)
      • 69. Nitta, T., Nakanishi, K.: ‘Charge accumulation on insulating spacers for HVDC GIS’, IEEE Trans. Dielectr. Electr. Insul, 1991, 26, (3), pp. 418426.
    61. 61)
      • 1. EPA: ‘Inventory of US Greenhouse gas emissions and sinks: 1990–2000’, Office of Atmospheric Programs’ (US Environmental Protection Agency, Washington, USA, 2002).
    62. 62)
      • 7. Koch, H.: ‘GIL gas-insulated transmission lines’ (Wiley/IEEE, Hoboken, NJ, USA, 2012, 1st edn.), pp. 149.
    63. 63)
      • 19. Chen, G., Tu, Y.P., Wang, C., et al: ‘Analysis on temperature distribution and current-carrying capacity of GIL filled with Fluoronitriles-CO2 gas mixture’, J. Electr. Eng. Technol., 2018, 13, (6), pp. 25452552.
    64. 64)
      • 12. Zhang, B., Qi, Z., Zhang, X.G.: ‘Charge accumulation patterns on spacer surface in HVDC gas-insulated system: dominant uniform charging and random charge speckles’, IEEE Trans. Dielectr. Electr. Insul., 2017, 24, (2), pp. 12291238.
    65. 65)
      • 60. Gao, K., Yan, X., Liu, Y., et al: ‘Progress of technology for environment-friendly gas insulated transmission line’, Trans. China Electr. Society, 2020, 35, (1), pp. 320, (in Chinese).
    66. 66)
      • 22. Zheng, Y., Zhou, W.J., Li, H., et al: ‘Influence of conductor surface roughness on insulation performance of C4F7N/CO2 mixed gas’, IEEE Trans. Dielectr. Electr. Insul., 2019, 26, (3), pp. 922929.
    67. 67)
      • 21. Chachereau, A., Hösl, A., Franck, C.M.: ‘Electrical insulation properties of the perfluoronitrile C4F7N’, J. Phys. D, Appl, Phys., 2018, 51, p. 495201.
    68. 68)
      • 37. Fu, Y.W., Yang, A.J., Wang, X.H., et al: ‘Theoretical study of the decomposition mechanism of C4F7N’, J. Phys. D: Appl. Phys., 2019, 52, (24), p. 245203.
    69. 69)
      • 35. Yu, X., Hou, H., Wang, B.S.: ‘Mechanistic and kinetic investigations on the thermal unimolecular reaction of heptafluoroisobutyronitrile’, J. Phys. Chem. A., 2018, 122, (38), pp. 77047715.
    70. 70)
      • 65. Cooke, C.M.: ‘Charging of insulator surfaces by ionization and transport in gases’, IEEE Trans. Electr. Insul., 1982, EI-17, (2), pp. 172178.
    71. 71)
      • 63. ISO 11114-2: Gas cylinders – compatibility of cylinder and valve materials with gas contents – Part 2: non-metallic materials, 2013.
    72. 72)
      • 27. Wang, C., Tu, Y.P., Cheng, Y., et al: ‘Characteristics of C3F7CN/CO2 as an alternative to SF6 in HVDC-GIL systems’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 13511356.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2020.0083
Loading

Related content

content/journals/10.1049/hve.2020.0083
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address