Your browser does not support JavaScript!
http://iet.metastore.ingenta.com
1887

access icon openaccess Non-contact method to reduce contact problems between sample and electrode in dielectric measurements

Dielectric response measurement is a widely used technique for characterising dielectric materials in terms of their capacitance and dielectric loss. However, the widely used approach with contact between samples and electrodes can in some cases limit the accuracy of the measurement. The authors introduce an easily realised electrode arrangement for non-contact measurements, which avoids these contact problems. The performance of the electrode arrangement in terms of the edge effect is assessed. The non-contact and contact methods are compared based on error-sensitivity analysis and experimental results. Differences are studied further, with attention to contact pressure. The non-contact method is also compared experimentally with the one-sided non-contact method. Air-reference measurements, comparing the sample to an air-gap for improved calibration, are used for all measurements. The results show that the non-contact method can be an alternative to reduce contact problems between the sample and electrodes, although error sensitivity can be higher when the non-contact method is used. The non-contact method can decrease the influence of the pressure applied to the sample compared to the contact method, and can also reduce the problem of poor contact that can arise from the absence of pressure in the one-sided non-contact method.

References

    1. 1)
      • 6. Sato, N.: ‘Electrochemistry at metal and semiconductor electrodes’ (Elsevier, Amsterdam, Netherlands, 1998).
    2. 2)
      • 1. Yang, L., Chen, J., Wang, S., et al: ‘Dielectric response measurement of oil-paper insulation based on system identification and its time-frequency-domain conversion method’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (5), pp. 16881698.
    3. 3)
      • 2. Gao, J., Yang, L., Wang, Y., et al: ‘Condition diagnosis of transformer oil-paper insulation using dielectric response fingerprint characteristics’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (2), pp. 12071218.
    4. 4)
      • 21. Xu, X., Bengtsson, T., Blennow, J., et al: ‘Correction of geometric influence in permittivity determination’. Proc. of the Nordic Insulation Symp., Trondheim, Norway, June 2013, pp. 7174.
    5. 5)
      • 22. Yuan, C., Xie, C., Li, L., et al: ‘Dielectric response characterization of in-service aged sheds of (U) HVDC silicone rubber composite insulators’, IEEE Trans. Dielectr. Electr. Insul., 2016, 23, (3), pp. 14181426.
    6. 6)
      • 9. Jones, T.I.: ‘Mercury electrodes for measurements on solid dielectrics at radio frequencies’, Inst. Electr. Eng. – Proc. Wirel. Sect. Inst., 1934, 9, (25), pp. 5865.
    7. 7)
      • 3. Setayeshmehr, A., Fofana, I., Eichler, C., et al: ‘Dielectric spectroscopic measurements on transformer oil-paper insulation under controlled laboratory conditions’, IEEE Trans. Dielectr. Electr. Insul., 2008, 15, (4), pp. 11001111.
    8. 8)
      • 7. Rogti, F., Ferhat, M.: ‘Maxwell–Wagner polarization and interfacial charge at the multi-layers of thermoplastic polymers’, J. Electrost., 2014, 72, (1), pp. 9197.
    9. 9)
      • 11. Pawar, M.S., Sutar, M.A., Maddani, K.I., et al: ‘Improvement in electrochemical performance of spray deposited V2O5 thin film electrode by anodization’, Mater. Today, Proc., 2017, 4, (2), pp. 35493556.
    10. 10)
      • 10. Lane, J.W., Seferis, J.C., Bachmann, M.A.: ‘Dielectric studies of the cure of epoxy matrix systems’, Polymer, 1986, 31, (5), pp. 11551167.
    11. 11)
      • 4. Xu, X., Bengtsson, T., Blennow, J., et al: ‘Enhanced accuracy in dielectric response material characterization by air reference method’, IEEE Trans. Dielectr. Electr. Insul., 2013, 20, (3), pp. 913921.
    12. 12)
      • 18. Chavez, P.P.: ‘Accurate Complex permittivity measurement with two-electrode contact-free apparatus’, IEEE Trans. Dielectr. Electr. Insul., 2018, 25, (4), pp. 14701478.
    13. 13)
      • 23. Hao, J., Xu, X., Taylor, N.: ‘An electrode setup for non-contact dielectric response measurement’. Proc. of the Nordic Insulation Symp., Tampere, Finland, June 2019, pp. 8893.
    14. 14)
      • 13. Ho, P.S., Hahn, P.O., Bartha, J.W., et al: ‘Chemical bonding and reaction at metal polymer interfaces’, J. Vac. Sci. Technol. A., 1985, 3, (3), pp. 739745.
    15. 15)
      • 14. de Saint-Aubin, C., Rosset, S., Schlatter, S., et al: ‘High-cycle electromechanical aging of dielectric elastomer actuators with carbon-based electrodes’, Smart Mater. Struct., 2018, 27, (7), p. 074002.
    16. 16)
      • 19. Vykhodtsev, A.V., Kordi, B., Oliver, D.R.: ‘Sensitivity analysis of a parallel-platemethod for measuring the dielectric permittivity of high-voltage insulating materials’, High Volt., 2017, 2, (3), pp. 200204.
    17. 17)
      • 17. Packard, H.: ‘Dielectric constant measurement of solid materials’, Application Note 380-1, 1989.
    18. 18)
      • 20. Zhou, Y., Zhang, C., Li, W., et al: ‘Correction of contact free measurement in outdoor insulation diagnostics’. 2016 Int. Conf. on Condition Monitoring and Diagnosis (CMD), Xi'an, China, September 2016, pp. 360363.
    19. 19)
      • 12. Kim, H.S., Gilmer, D.C., Campbell, S.A., et al: ‘Leakage current and electrical breakdown in metal-organic chemical vapor deposited TiO2 dielectrics on silicon substrates’, Appl. Phys. Lett., 1996, 69, (25), pp. 38603862.
    20. 20)
      • 16. Sau, K., Chaki, T., Khastgir, D.: ‘The effect of compressive strain and stress on electrical conductivity of conductive rubber composites’, Rub. Chem. Technol., 2000, 73, (2), pp. 310324.
    21. 21)
      • 15. Suriani, A.B., Nurhafizah, M.D., Mohamed, A., et al: ‘Highly conductive electrodes of graphene oxide/natural rubber latex-based electrodes by using a hyper-branched surfactant’, Mater. Des., 2016, 99, pp. 174181.
    22. 22)
      • 24. Freye, C., Jenau, F.: ‘Model-based accuracy enhancements for guarded conductivity measurements: determination of effective electrode areas utilising numerical field simulation’, High Volt., 2018, 3, (3), pp. 217225.
    23. 23)
      • 8. Song, Y., Yin, J., Bu, W., et al: ‘Effect of electrode materials on breakdown of Al2O3/Pi films’. IEEE 9th Int. Conf. on the Properties and Applications of Dielectric Materials, Harbin, China, July 2009, pp. 823825.
    24. 24)
      • 5. Richert, R.: ‘Insulated electrodes for eliminating conductivity in dielectric relaxation experiments’, Eur. Phys. J. B, 2009, 68, (2), pp. 197200.
http://iet.metastore.ingenta.com/content/journals/10.1049/hve.2019.0334
Loading

Related content

content/journals/10.1049/hve.2019.0334
pub_keyword,iet_inspecKeyword,pub_concept
6
6
Loading
This is a required field
Please enter a valid email address