Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter August 11, 2020

Reaction between Cu-bearing minerals and hydrothermal fluids at 800 °C and 200 MPa: Constraints from synthetic fluid inclusions

  • Dongmei Qi ORCID logo EMAIL logo , Harald Behrens , Roman Botcharnikov , Insa Derrey , Francois Holtz , Chao Zhang , Xiaoyan Li and Ingo Horn
From the journal American Mineralogist

Abstract

Transport and deposition of copper in the Earth’s crust are mainly controlled by the solubility of Cu-bearing phases and the speciation of Cu in magmatic-hydrothermal fluids. To improve our understanding of copper mobilization by hydrothermal fluids, we conducted an experimental study on the interaction between Cu-bearing phases (metallic copper, Cu2O, CuCl) and aqueous chloride solutions (H2O ± NaCl ± HCl; with Cl concentrations of 0 to 4.3 mol kg-1). The experiments were run in rapid heat/rapid quench cold-seal pressure vessels at 800 °C, 200 MPa, and logfO2 ~ NNO+2.3. Either Cu or Au capsules were used as containers. The reaction products were sampled in situ by the entrapment of synthetic fluid inclusions in quartz. Fluid composition was subsequently determined by analyzing individual fluid inclusions using a freezing cell and laser ablation inductively coupled plasma-mass spectrometry. Our results show that large isolated and isometric inclusions, free of late-stage modifications, can be preserved after the experiment even when using a high cooling rate of 25 K s-1.

The obtained results demonstrate that: (1) reaction between native Cu, NaCl solution, and quartz (± silica gel) leads to the coexistence of fluid inclusions and Na-bearing silicate melt inclusions. Micrometer- to submicrometer-sized cuprite (Cu2O) crystals have been observed in both types of the inclusions, and they are formed most probably due to the dissociation of CuOH. (2) When Cu0 reacts with HCl and CuCl solutions, or Cu+ reacts with NaCl solution, nantokite (CuCl) formed due to oversaturation has been found in fluid inclusion. Copper concentration in the fluid shows a strong positive dependence on the initial chlorine content, with Cu/Cl molal ratios varying from 1:9 to 1:1 in case 1 and case 2, respectively. When Cl is fixed to 1.5 m, initial fluid acidity has a major control on the Cu content, i.e., 0.17 ± 0.09 and 1.29 ± 0.57 m Cu were measured in fluids of case 1 and case 2, respectively. Cu solubility in pure water and in 1.5 m NaCl solutions are 0.004 ± 0.002 and 0.16 ± 0.07 m, respectively. The main responsible Cu-bearing complexes are CuOH(H2O)x in water, NaCuCl2 in NaCl solutions and HCuCl2 in alkali-free solutions. These results provide quantitative constraints on the mobility of Cu in hydrothermal solutions and confirm that Cl is a very important ligand responsible for Cu transport. The first observation that silicate melt can be generated in the fluid-dominated and native-copper-bearing system implies that transitional thermosilicate liquids can coexist with metal-rich fluids and may enhance Cu mobility in magmatic-hydrothermal systems. This may have important implications for the formation of Cu deposits in the systems with low S activities.


* Present address: Department of Geology and Mining Engineering, Xinjiang University, Urumqi 830046, China.

† Special collection papers can be found online at http://www.minsocam.org/MSA/AmMin/special-collections.html.


Acknowledgments and funding

We thank Moritz Albrecht, Martin Oeser-Rabe, Ulrich Kroll, and Julian Feige for their technical support. We also thank Hongwu Xu and Kyle Ashley for editorial handling as well as two reviewers (Adam Simon and Ryan Mathur) for their constructive and thorough comments on this manuscript. This research was supported by the German Academic Exchange Service (DAAD-57076462) and Graduate School GeoFluxes.

References cited

Albrecht, M., Derrey, I.T., Horn, I., Schuth, S., and Weyer, S. (2014) Quantification of trace element contents in frozen fluid inclusions by UV-fs-LA-ICP-MS analysis. Journal of Analytical Atomic Spectrometry, 29(6), 1034–1041. DOI: 10.1039/c4ja00015c.10.1039/c4ja00015cSearch in Google Scholar

Anderson, G., and Burham, C. (1967) Reactions of quartz and corundum with aqueous chloride and hydroxide solutions at high temperatures and pressures. American Journal of Science, 265(1), 12–27. DOI: 10.2475/ajs.265.1.12.10.2475/ajs.265.1.12Search in Google Scholar

Archibald, S., Migdisov, A.A., and Williams-Jones, A. (2001) The stability of Au-chloride complexes in water vapor at elevated temperatures and pressures. Geochimica et Cosmochimica Acta, 65(23), 4413–4423. DOI: 10.1016/ S0016-7037(01)00730-X.10.1016/S0016-7037(01)00730-XSearch in Google Scholar

Archibald, S., Migdisov, A.A., and Williams-Jones, A. (2002) An experimental study of the stability of copper chloride complexes in water vapor at elevated temperatures and pressures. Geochimica et Cosmochimica Acta, 66(9), 1611–1619. DOI: 10.1016/S0016-7037(01)00867-5.10.1016/S0016-7037(01)00867-5Search in Google Scholar

Audétat, A., and Günther, D. (1999) Mobility and H2O loss from fluid inclusions in natural quartz crystals. Contributions to Mineralogy and Petrology, 137(1-2), 1–14. DOI: 10.1007/s004100050578.10.1007/s004100050578Search in Google Scholar

Audétat, A., and Simon, A.C. (2012) Magmatic controls on porphyry copper genesis. SEG Special Publication, 16, 553–572.10.5382/SP.16.21Search in Google Scholar

Audétat, A., Zhang, L., and Ni, H. (2018) Copper and Li diffusion in plagioclase, pyroxenes, olivine and apatite, and consequences for the composition of melt inclusions. Geochimica et Cosmochimica Acta, 243, 99–115. DOI: 10.1016/j. gca.2018.09.016.10.1016/j.gca.2018.09.016Search in Google Scholar

Bakker, R.J. (2003) Package FLUIDS 1. Computer programs for analysis of fluid inclusion data and for modelling bulk fluid properties. Chemical Geology, 194(1), 3–23. DOI: 10.1016/S0009-2541(02)00268-1.10.1016/S0009-2541(02)00268-1Search in Google Scholar

Berndt, J., Holtz, F., and Koepke, J. (2001) Experimental constraints on storage conditions in the chemically zoned phonolitic magma chamber of the Laacher See volcano. Contributions to Mineralogy and Petrology, 140(4), 469–486. DOI: 10.1007/Pl00007674.10.1007/Pl00007674Search in Google Scholar

Berry, A.J., Hack, A.C., Mavrogenes, J.A., Newville, M., and Sutton, S.R. (2006) AXANES study of Cu speciation in high-temperature brines using synthetic fluid inclusions. American Mineralogist, 91, 1773–1782. DOI: 10.2138/ am.2006.1940.10.2138/am.2006.1940Search in Google Scholar

Bodnar, R., and Sterner, S. (1987) Synthetic fluid inclusions. In H.L. Barnes and G.C. Ulmer, Eds., Hydrothermal Experimental Techniques, p. 423–455. Wiley.Search in Google Scholar

Bodnar, R., Lecumberi-Sanches, P., Moncada, D., and Steele-MacInnis, M. (2014) Fluid inclusions in hydrothermal ore deposits, Treatise on Geochemistry 2nd ed., pp. 119–142.Search in Google Scholar

Bornhorst, T.J., and Mathur, R. (2017) Copper isotope constraints on the genesis of the Keweenaw Peninsula Native Copper District, Michigan, USA. Minerals, 7(10), 185. DOI: 10.3390/min7100185.10.3390/min7100185Search in Google Scholar

Brugger, J., McPhail, D., Black, J., and Spiccia, L. (2001) Complexation of metal ions in brines: application of electronic spectroscopy in the study of the Cu (II)-LiCl-H2O system between 25 and 90°C. Geochimica et Cosmochimica Acta, 65(16), 2691–2708. DOI: 10.1016/S0016-7037(01)00614-7.10.1016/S0016-7037(01)00614-7Search in Google Scholar

Brugger, J., Etschmann, B., Liu, W., Testemale, D., Hazemann, J.L., Emerich, H., van Beek, W., and Proux, O. (2007) An XAS study of the structure and thermodynamics of Cu (I) chloride complexes in brines up to high temperature (400°C, 600 bar). Geochimica et Cosmochimica Acta, 71(20), 4920–4941. DOI: 10.1016/j.gca.2007.08.003.10.1016/j.gca.2007.08.003Search in Google Scholar

Butler, B.S., and Burbank, W.S. (1929) The copper deposits of Michigan. U.S. Geological Survey Professional Paper 144.10.3133/pp144Search in Google Scholar

Candela, P.A., and Holland, H.D. (1984) The partitioning of copper and molybdenum between silicate melts and aqueous fluids. Geochimica et Cosmochimica Acta, 48, 373–380. doi: 10.1016/0016-7037(84)90257-6.10.1016/0016-7037(84)90257-6Search in Google Scholar

Cline, J.S., and Bodnar, R.J. (1991) Can economic porphyry copper mineralization be generated by a typical calc-alkaline melt? Journal of Geophysical Research 96, 8113–8126. https://doi.org/10.1029/91JB0005310.1029/91JB00053Search in Google Scholar

Colomban, P., and Schreiber, D.H. (2005) Raman signature modification induced by copper nanoparticles in silicate glass. Journal of Raman Spectroscopy, 36, 884–890. DOI: 10.1002/jrs.1379.10.1002/jrs.1379Search in Google Scholar

Crerar, D.A., and Barnes, H. (1976) Ore solution chemistry; V, Solubilities of chalcopyrite and chalcocite assemblages in hydrothermal solution at 200 degrees to 350 degrees C. Economic Geology, 71(4), 772–794. DOI: 10.2113/ gsecongeo.71.4.772.10.2113/gsecongeo.71.4.772Search in Google Scholar

Davidson, P., and Kamenetsky, V.S. (2007) Primary aqueous fluids in rhyolitic magmas: Melt inclusion evidence for pre- and post-trapping exsolution. Chemical Geology 237, 372–383. https://doi.org/10.1016/j.chemgeo.2006.07.00910.1016/j.chemgeo.2006.07.009Search in Google Scholar

Derrey, I.T., Albrecht, M., Dupliy, E., Botcharnikov, R.E., Horn, I., Junge, M., Weyer, S., and Holtz, F. (2017) Experimental tests on achieving equilibrium in synthetic fluid inclusions: Results for scheelite, molybdenite, and gold solubility at 800 °C and 200 MPa. American Mineralogist, 102(2), 275–283. DOI: 10.2138/am-2017-5869.10.2138/am-2017-5869Search in Google Scholar

Duc-Tin, Q., Audétat, A., and Keppler, H. (2007) Solubility of tin in (Cl, F)-bearing aqueous fluids at 700 °C, 140 MPa: A LA-ICP-MS study on synthetic fluid inclusions. Geochimica et Cosmochimica Acta, 71(13), 3323–3335. DOI: 10.1016/j.gca.2007.04.022.10.1016/j.gca.2007.04.022Search in Google Scholar

Fulton, J.L., Hoffmann, M.M., and Darab, J.G. (2000) An X‑ray absorption fine structure study of copper (I) chloride coordination structure in water up to 325°C. Chemical Physics Letters, 330(3), 300–308. DOI: 10.1016/S0009-2614(00)01110-6.10.1016/S0009-2614(00)01110-6Search in Google Scholar

Guillong, M., and Heinrich, C.A. (2007) Sensitivity enhancement in laser ablation ICP-MS using small amounts of hydrogen in the carrier gas. Journal of Analytical Atomic Spectrometry, 22(12), 1488–1494. DOI: 10.1039/b709489b.10.1039/b709489bSearch in Google Scholar

Guillong, M., Meier, D.L., Allan, M.M., Heinrich, C.A., and Yardley, B.W. (2008) Appendix A6: SILLS: A MATLAB-based program for the reduction of laser ablation ICP-MS data of homogeneous materials and inclusions. Mineralogical Association of Canada Short Course Series, 40, 328–333.Search in Google Scholar

Günther, D., Audétat, A., Frischknecht, R., and Heinrich, C.A. (1998) Quantitative analysis of major, minor and trace elements in fluid inclusions using laser ablation–inductively coupled plasmamass spectrometry. Journal of Analytical Atomic Spectrometry, 13(4), 263–270. DOI: 10.1039/A707372K.10.1039/A707372KSearch in Google Scholar

Hack, A.C., and Mavrogenes, J.A. (2006) A synthetic fluid inclusion study of copper solubility in hydrothermal brines from 525 to 725°C and 0.3 to 1.7 GPa. Geochimica et Cosmochimica Acta, 70(15), 3970–3985. DOI: 10.1016/j.gca.2006.04.035.10.1016/j.gca.2006.04.035Search in Google Scholar

Harris, A.C., Kamenetsky, V.S., White, N.C., and others. (2003) Melt inclusions in veins: Linking magmas and porphyry Cu deposits. Science, 302, 2109–2111. doi: 10.1126/science.1089927.10.1126/science.1089927Search in Google Scholar

Hedenquist, J., and Richards, J. (1998) The influence of geochemical techniques on the development of genetic models for porphyry copper deposits. Reviews in Economic Geology, 10(10), 235–256. DOI: 10.5382/Rev.10.10.10.5382/Rev.10.10Search in Google Scholar

Holzheid, A., and Lodders, K. (2001) Solubility of copper in silicate melts as function of oxygen and sulfur fugacities, temperature, and silicate composition. Geochimica et Cosmochimica Acta, 65(12), 1933–1951. DOI: 10.1016/ S0016-7037(01)00545-2.10.1016/S0016-7037(01)00545-2Search in Google Scholar

Ikehata, K., and Hirata, T. (2012) Copper isotope characteristics of copper-rich minerals from the Horoman peridotite complex, Hokkaido, northern Japan. Economic Geology, 107(7), 1489–1497. DOI: 10.2113/econgeo.107.7.1489.10.2113/econgeo.107.7.1489Search in Google Scholar

Ikehata, K., Chida, K., Tsunogae, T., and Bornhorst, T.J. (2016) Hydrothermal native copper in ocean island alkali basalt from the Mineoka Belt, Boso Peninsula, Central Japan. Economic Geology, 111(3), 783–794. DOI: 10.2113/ econgeo. 111.3.783.10.2113/econgeo. 111.3.783Search in Google Scholar

Jochum, K.P., Nohl, L., Herwig, K., Lammel, E., Toll, B., and Hofmann, A.W. (2005) GeoReM: a new geochemical database for reference materials and isotopic standards. Geostandards and Geoanalytical Research, 29(3), 333–338. DOI: 10.1111/j.1751-908X.2005.tb00904.x.10.1111/j.1751-908X.2005.tb00904.xSearch in Google Scholar

Lerchbaumer, L., and Audétat, A. (2012) High Cu concentrations in vapor-type fluid inclusions: An artifact? Geochimica et Cosmochimica Acta, 88, 255–274. DOI: 10.1016/j.gca.2012.04.033.10.1016/j.gca.2012.04.033Search in Google Scholar

Li, Y., and Audétat, A. (2009) A method to synthesize large fluid inclusions in quartz at controlled times and under unfavorable growth conditions. American Mineralogist, 94(2-3), 367–371. DOI: 10.2138/am.2009.3054.10.2138/am.2009.3054Search in Google Scholar

Li, Y., Audétat, A., Lerchbaumer, L., and Xiong, X. (2009) Rapid Na, Cu exchange between synthetic fluid inclusions and external aqueous solutions: evidence from LA-ICP-MS analysis. Geofluids, 9(4), 321–329. DOI: 10.1111/j.1468-8123.2009.00255.x.10.1111/j.1468-8123.2009.00255.xSearch in Google Scholar

Liu, W., and McPhail, D. (2005) Thermodynamic properties of copper chloride complexes and copper transport in magmatic-hydrothermal solutions. Chemical Geology, 221(1), 21–39. DOI: 10.1016/j.chemgeo.2005.04.00.10.1016/j.chemgeo.2005.04.00Search in Google Scholar

Liu, W., McPhail, D., and Brugger, J. (2001) An experimental study of copper(I)-chloride and copper(I)-acetate complexing in hydrothermal solutions between 50°C and 250°C and vapor-saturated pressure. Geochimica et Cosmochimica Acta, 65(17), 2937–2948. DOI: 10.1016/S0016-7037(01)00631-7.10.1016/S0016-7037(01)00631-7Search in Google Scholar

Liu, W., Brugger, J., McPhail, D., and Spiccia, L. (2002) A spectrophotometric study of aqueous copper(I)–chloride complexes in LiCl solutions between 100 °C and 250 °C. Geochimica et Cosmochimica Acta, 66(20), 3615–3633. DOI: 10.1016/S0016-7037(02)00942-0.10.1016/S0016-7037(02)00942-0Search in Google Scholar

Liu, W., Brugger, J., Etschmann, B., Testemale, D., and Hazemann, J.-L. (2008) The solubility of nantokite (CuCl (s)) and Cu speciation in low-density fluids near the critical isochore: An in-situ XAS study. Geochimica et Cosmochimica Acta, 72(16), 4094–4106. DOI: 10.1016/j.gca.2008.05.056.10.1016/j.gca.2008.05.056Search in Google Scholar

Lowenstern, J.B. (1995) Applications of silicate-melt inclusions to the study of magmatic volatiles. In J.F.H. Thompson, Ed., Magmas, Fluids Ore Deposits. Mineralogical Association of Canada Short Course, 23, 71–99.Search in Google Scholar

Matthews, W., Linnen, R.L., and Guo, Q. (2003) A filler-rod technique for controlling redox conditions in cold-seal pressure vessels. American Mineralogist, 88(4), 701–707. DOI: 10.2138/am-2003-0424.10.2138/am-2003-0424Search in Google Scholar

Mavrogenes, J., and Bodnar, R. (1994) Hydrogen movement into and out of fluid inclusions in quartz: experimental evidence and geologic implications. Geochimica et Cosmochimica Acta, 58(1), 141–148. DOI: 10.1016/0016-7037(94)90452-9.10.1016/0016-7037(94)90452-9Search in Google Scholar

Mernagh, T.P., and Mavrogenes, J. (2018) Significance of high temperature fluids and melts in the Grasberg porphyry copper-gold deposit. Chemical Geology. DOI: 10.1016/j.chemgeo.2018.09.040.10.1016/j.chemgeo.2018.09.040Search in Google Scholar

Mountain, B., and Seward, T. (1999) The hydrosulphide/sulphide complexes of copper(I): Experimental determination of stoichiometry and stability at 22°C and reassessment of high temperature data. Geochimica et Cosmochimica Acta, 63(1), 11–29. DOI: 10.1016/S0016-7037(98)00288-9.10.1016/S0016-7037(98)00288-9Search in Google Scholar

Mountain, B., and Seward, T. (2003) Hydrosulfide/sulfide complexes of copper (I): experimental confirmation of the stoichiometry and stability of Cu (HS)2- to elevated temperatures. Geochimica et Cosmochimica Acta, 67(16), 3005–3014. DOI: 10.1016/ S0016-7037(03)00303-X.10.1016/S0016-7037(03)00303-XSearch in Google Scholar

Nagle, F., Fink, L., Boström, K., and Stipp, J. (1973) Copper in pillow basalts from La Désirade, Lesser Antilles island arc. Earth and Planetary Science Letters, 19(2), 193–197. DOI: 10.1016/0012-821X(73)90114-3.10.1016/0012-821X(73)90114-3Search in Google Scholar

Nash, J.T. (1976) Fluid-inclusion petrology–data from porphyry copper deposits and applications to exploration: a summary of new and published descriptions of fluid inclusions from 36 porphyry copper deposits and discussion of possible applications to exploration for copper deposits. U. S. Geological Survey Professional Paper 907-D.10.3133/pp907DSearch in Google Scholar

Neumann, J., Zhong, T., and Chang, Y. (1984) The Cu-O (Copper-Oxygen) system. Journal of Phase Equilibria, 5(2), 136–140. DOI: 10.1007/BF02868948.10.1007/BF02868948Search in Google Scholar

Pinto, V.M., Hartmann, L.A., and Wildner, W. (2011) Epigenetic hydrothermal origin of native copper and supergene enrichment in the Vista Alegre district, Paraná basaltic province, southernmost Brazil. International Geology Review, 53(10), 1163–1179. DOI: 10.1080/00206810903464547.10.1080/00206810903464547Search in Google Scholar

Pitzer, K.S., and Sterner, S.M. (1994) Equations of state valid continuously from zero to extreme pressures for H2O and CO2 The Journal of Chemical Physics, 101(4), 3111–3116. DOI: 10.1063/1.467624.10.1063/1.467624Search in Google Scholar

Pouchou, J.L., and Pichoir, F. (1991) Quantitative analysis of homogeneous or stratified microvolumes applying the model “PAP”, Electron probe quantitation. Springer, pp. 31–75.Search in Google Scholar

Reiter, F., Forcey, K., and Gervasini, G. (1993) A compilation of tritium—Material interaction parameters in fusion reactor materials. Commission of the European Communities, 60 p. Publications Office of the European Union.Search in Google Scholar

Rempel, K.U., Liebscher, A., Meixner, A., Romer, R.L., and Heinrich, W. (2012) An experimental study of the elemental and isotopic fractionation of copper between aqueous vapour and liquid to 450° C and 400 bar in the CuCl–NaCl–H2O and CuCl–NaHS–NaCl–H2O systems. Geochimica et Cosmochimica Acta, 94, 199–216. DOI: 10.1016/j.gca.2012.06.028.10.1016/j.gca.2012.06.028Search in Google Scholar

Ripley, E.M., and Brophy, J.G. (1995) Solubility of copper in a sulfur-free mafic melt. Geochimica et Cosmochimica Acta, 59(23), 5027–5030. DOI: 10.1016/0016-7037(95)00387-8.10.1016/0016-7037(95)00387-8Search in Google Scholar

Roedder, E. (1984) Fluid Inclusions, 646 p. Reviews in Mineralogy, Mineralogical Society of America, Chantilly, Virginia.10.1515/9781501508271Search in Google Scholar

Rottier, B., Kouzmanov, K., Bouvier, A.S., Baumgartner, L.P., Wälle, M., Rezeau, H., Bendezú, R., and Fontboté, L. (2016) Heterogeneous melt and hypersaline liquid inclusions in shallow porphyry type mineralization as markers of the magmatic-hydrothermal transition (Cerro de Pasco district, Peru). Chemical Geology 447, 93–116. https://doi.org/10.1016/j.chemgeo.2016.10.03210.1016/j.chemgeo.2016.10.032Search in Google Scholar

Rottier, B., Rezeau, H., Casanova, V., Kouzmanov, K., Moritz, R., Schlöglova, K., Wälle, M., and Fontboté, L. (2017) Trace element diffusion and incorporation in quartz during heating experiments. Contributions to Mineralogy and Petrology, 172(4), 23. DOI: 10.1007/s00410-017-1350-4.10.1007/s00410-017-1350-4Search in Google Scholar

Schmidt, C., Watenphul, A., Jahn, S., Schäpan, I., Scholten, L., Newville, M.G., and Lanzirotti, A. (2018) Copper complexation and solubility in high-temperature hydrothermal fluids: A combined study by Raman, X‑ray fluorescence, and X‑ray absorption spectroscopies and ab initio molecular dynamics simulations. Chemical Geology, 494, 69–79. DOI: 10.1016/j.chemgeo.2018.07.018.10.1016/j.chemgeo.2018.07.018Search in Google Scholar

Seward, T., and Barnes, H. (1997) Metal transport by hydrothermal ore fluids. Geochemistry of Hydrothermal Ore Deposits, p. 435–486. Wiley.Search in Google Scholar

Sherman, D.M. (2007) Complexation of Cu+ in hydrothermal NaCl brines: ab initio molecular dynamics and energetics. Geochimica et Cosmochimica Acta, 71(3), 714–722. DOI: 10.1016/j.gca.2006.09.015.10.1016/j.gca.2006.09.015Search in Google Scholar

Sillitoe, R.H. (2010) Porphyry copper systems. Economic Geology, 105, 3–41.10.2113/gsecongeo.105.1.3Search in Google Scholar

Stefanova, E., Driesner, T., Zajacz, Z., Heinrich, C.A., Petrov, P., and Vasilev, Z. (2014) Melt and fluid inclusions in hydrothermal veins: The magmatic to hydrothermal evolution of the elatsite porphyry Cu-Au deposit, Bulgaria. Economic Geology, 109, 1359–1381. https://doi.org/10.2113/econgeo.109.5.135910.2113/econgeo.109.5.1359Search in Google Scholar

Stoiber, R.E., and Davidson, E.S. (1959) Amygdule mineral zoning in the Portage Lake lava series, Michigan copper district; Part II. Economic Geology, 54(8), 1444–1460. DOI: 10.2113/gsecongeo.54.7.1250.10.2113/gsecongeo.54.7.1250Search in Google Scholar

Swamy, V., Saxena, S.K., Sundman, B., and Zhang, J. (1994) A thermodynamic assessment of silica phase diagram. Journal of Geophysical Research, 99(B6), 11,787–11,794. DOI: 10.1029/93JB02968.10.1029/93JB02968Search in Google Scholar

Thompson, R.A., and Helz, G.R. (1994) Copper speciation in sulfidic solutions at low sulfur activity: Further evidence for cluster complexes? Geochimica et Cosmochimica Acta, 58(14), 2971–2983. DOI: 10.1016/0016-7037(94)90172-4.10.1016/0016-7037(94)90172-4Search in Google Scholar

Var’yash, L. (1992) Cu (I) complexing in NaCl solutions at 300 and 350 °C. Geochemistry International, 29(3), 84–92.Search in Google Scholar

Wang, C.Y., Zhou, M.F., Qi, L., Hou, S., Gao, H., Zhang, Z., and Malpas, J. (2006) The Zhaotong native copper deposit associated with the Permian Emeishan flood basalts, Yunnan, Southwest China. International Geology Review, 48(8), 742–753. DOI: 10.2747/0020-6814.48.8.742.10.2747/0020-6814.48.8.742Search in Google Scholar

Weege, R., and Pollack, J. (1971) Recent developments in the native-copper district of Michigan. Society of Economic Geologists Guidebook for Field Conference, Michigan Copper District, pp. 18–43.Search in Google Scholar

Williams-Jones, A.E., Migdisov, A.A., Archibald, S.M., and Xiao, Z. (2002) Vapor-transport of ore metals. Water–Rock Interaction, Ore Deposits, and Environmental Geochemistry: A Tribute to David A. Crerar, p. 279–306.Search in Google Scholar

Xiao, Z., Gammons, C., and Williams-Jones, A. (1998) Experimental study of copper (I) chloride complexing in hydrothermal solutions at 40 to 300 °C and saturated water vapor pressure. Geochimica et Cosmochimica Acta, 62(17), 2949–2964. DOI: 10.1016/S0016-7037(98)00228-2.10.1016/S0016-7037(98)00228-2Search in Google Scholar

Zajacz, Z., Seo, J.H., Candela, P.A., Piccoli, P.M., and Tossell, J.A. (2011) The solubility of copper in high-temperature magmatic vapors: a quest for the significance of various chloride and sulfide complexes. Geochimica et cosmochimica acta, 75(10), 2811–2827. DOI: 10.1016/j.gca.2011.02.029.10.1016/j.gca.2011.02.029Search in Google Scholar

Zajacz, Z., Candela, P.A., Piccoli, P.M., Wälle, M., and Sanchez-Valle, C. (2012) Gold and copper in volatile saturated mafic to intermediate magmas: Solubilities, partitioning, and implications for ore deposit formation. Geochimica et Cosmochimica Acta, 91, 140–159. https://doi.org/10.1016/j.gca.2012.05.03310.1016/j.gca.2012.05.033Search in Google Scholar

Zhang, D., Zhou, T., Yuan, F., Fiorentini, M.L., Said, N., Lu, Y., and Pirajno, F. (2013) Geochemical and isotopic constraints on the genesis of the Jueluotage native copper mineralized basalt, Eastern Tianshan, Northwest China. Journal of Asian Earth Sciences, 73, 317–333. DOI: 10.1016/j.jseaes.2013.04.043.10.1016/j.jseaes.2013.04.043Search in Google Scholar

Zhang, L., Audétat, A., and Dolejš, D. (2012) Solubility of molybdenite (MoS2 in aqueous fluids at 600–800°C, 200MPa: A synthetic fluid inclusion study. Geochimica et Cosmochimica Acta, 77, 175–185. DOI: 10.1016/j.gca.2011.11.015.10.1016/j.gca.2011.11.015Search in Google Scholar

Zhang, Y., Xu, Z., and Behrens, H. (2000) Hydrous species geospeedometer in rhyolite: improved calibration and application. Geochimica et Cosmochimica Acta, 64(19), 3347–3355. DOI: 10.1016/S0016-7037(00)00424-5.10.1016/S0016-7037(00)00424-5Search in Google Scholar

Zhang, Z., Mao, J., Wang, F., and Pirajno, F. (2006) Native gold and native copper grains enclosed by olivine phenocrysts in a picrite lava of the Emeishan large igneous province, SW China. American Mineralogist, 91(7), 1178–1183. DOI: 10.2138/am.2006.1888.10.2138/am.2006.1888Search in Google Scholar

Zhu, B., Hu, Y., Zhang, Z., and Chang, X. (2003) Discovery of the copper deposits with features of the Keweenawan type in the border area of Yunnan and Guizhou provinces. Science in China Series D: Earth Sciences, 46(1), 60–72.Search in Google Scholar

Received: 2019-05-13
Accepted: 2020-02-02
Published Online: 2020-08-11
Published in Print: 2020-08-26

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 10.5.2024 from https://www.degruyter.com/document/doi/10.2138/am-2020-7114/html
Scroll to top button