1932

Abstract

Cancer is a multifaceted disease in which inherited genetic variants can be important drivers of tumorigenesis. The discovery that germline mutations of metabolic genes predispose to familial forms of cancer caused a shift in our understanding of how metabolism contributes to tumorigenesis, providing evidence that metabolic alterations can be oncogenic. In this review, we focus on mitochondrial enzymes whose mutations predispose to familial cancer, and we fully appraise their involvement in cancer formation and progression. Elucidating the molecular mechanisms that orchestrate transformation in these diverse tumors may answer key biological questions about tumor formation and evolution, leading to the identification of new therapeutic targets of intervention.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cancerbio-030419-033612
2020-03-04
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/cancerbio/4/1/annurev-cancerbio-030419-033612.html?itemId=/content/journals/10.1146/annurev-cancerbio-030419-033612&mimeType=html&fmt=ahah

Literature Cited

  1. Adam J, Hatipoglu E, O'Flaherty L, Ternette N, Sahgal N et al. 2011. Renal cyst formation in Fh1-deficient mice is independent of the Hif/Phd pathway: roles for fumarate in KEAP1 succination and Nrf2 signaling. Cancer Cell 20:524–37
    [Google Scholar]
  2. Alderson NL, Wang Y, Blatnik M, Frizzell N, Walla MD et al. 2006. S-(2-Succinyl)cysteine: a novel chemical modification of tissue proteins by a Krebs cycle intermediate. Arch. Biochem. Biophys. 450:1–8
    [Google Scholar]
  3. Al-Khallaf H. 2017. Isocitrate dehydrogenases in physiology and cancer: biochemical and molecular insight. Cell Biosci 7:37
    [Google Scholar]
  4. Allegri G, Fernandes MJ, Scalco FB, Correia P, Simoni RE et al. 2010. Fumaric aciduria: an overview and the first Brazilian case report. J. Inherit. Metab. Dis. 33:411–19
    [Google Scholar]
  5. Alston CL, Davison JE, Meloni F, van der Westhuizen FH, He L et al. 2012. Recessive germline SDHA and SDHB mutations causing leukodystrophy and isolated mitochondrial complex II deficiency. J. Med. Genet. 49:569–77
    [Google Scholar]
  6. Andrews KA, Ascher DB, Pires DEV, Barnes DR, Vialard L et al. 2018. Tumour risks and genotype-phenotype correlations associated with germline variants in succinate dehydrogenase subunit genes SDHB. SDHC and SDHD. J. Med. Genet 55:384–94
    [Google Scholar]
  7. Armstrong CT, Anderson JLR, Denton RM 2014. Studies on the regulation of the human E1 subunit of the 2-oxoglutarate dehydrogenase complex, including the identification of a novel calcium-binding site. Biochem. J. 459:369–81
    [Google Scholar]
  8. Ashrafian H, O'Flaherty L, Adam J, Steeples V, Chung YL et al. 2010. Expression profiling in progressive stages of fumarate-hydratase deficiency: the contribution of metabolic changes to tumorigenesis. Cancer Res 70:9153–65
    [Google Scholar]
  9. Astuti D, Douglas F, Lennard TW, Aligianis IA, Woodward ER et al. 2001a. Germline SDHD mutation in familial phaeochromocytoma. Lancet 357:1181–82
    [Google Scholar]
  10. Astuti D, Latif F, Dallol A, Dahia PLM, Douglas F et al. 2001b. Gene mutations in the succinate dehydrogenase subunit SDHB cause susceptibility to familial pheochromocytoma and to familial paraganglioma. Am. J. Hum. Genet. 69:49–54
    [Google Scholar]
  11. Bardella C, El-Bahrawy M, Frizzell N, Adam J, Ternette N et al. 2011. Aberrant succination of proteins in fumarate hydratase-deficient mice and HLRCC patients is a robust biomarker of mutation status. J. Pathol. 225:4–11
    [Google Scholar]
  12. Bayley J-P, Kunst HPM, Cascon A, Sampietro ML, Gaal J et al. 2010. SDHAF2 mutations in familial and sporadic paraganglioma and phaeochromocytoma. Lancet Oncol 11:366–72
    [Google Scholar]
  13. Baysal BE. 2013. Mitochondrial complex II and genomic imprinting in inheritance of paraganglioma tumors. Biochim. Biophys. Acta 1827:573–77
    [Google Scholar]
  14. Baysal BE, Ferrell RE, Willett-Brozick JE, Lawrence EC, Myssiorek D et al. 2000. Mutations in SDHD, a mitochondrial complex II gene, in hereditary paraganglioma. Science 287:848–51
    [Google Scholar]
  15. Baysal BE, Maher ER. 2015. 15 years of paraganglioma: genetics and mechanism of pheochromocytoma-paraganglioma syndromes characterized by germline SDHB and SDHD mutations. Endocr.-Relat. Cancer 22:T71–82
    [Google Scholar]
  16. Baysal BE, McKay SE, Kim YJ, Zhang Z, Alila L et al. 2011. Genomic imprinting at a boundary element flanking the SDHD locus. Hum. Mol. Genet. 20:4452–61
    [Google Scholar]
  17. Benn DE, Zhu Y, Andrews KA, Wilding M, Duncan EL et al. 2018. Bayesian approach to determining penetrance of pathogenic SDH variants. J. Med. Genet. 55:729–34
    [Google Scholar]
  18. Boikos SA, Pappo AS, Killian JK, LaQuaglia MP, Weldon CB et al. 2016. Molecular subtypes of KIT/PDGFRA wild-type gastrointestinal stromal tumors: a report from the National Institutes of Health gastrointestinal stromal tumor clinic. JAMA Oncol 2:922–28
    [Google Scholar]
  19. Bourgeron T, Rustin P, Chretien D, Birch-Machin M, Bourgeois M et al. 1995. Mutation of a nuclear succinate dehydrogenase gene results in mitochondrial respiratory chain deficiency. Nat. Genet. 11:144–49
    [Google Scholar]
  20. Brabletz T, Kalluri R, Nieto MA, Weinberg RA 2018. EMT in cancer. Nat. Rev. Cancer 18:128–34
    [Google Scholar]
  21. Buffet A, Morin A, Castro-Vega L-J, Habarou F, Lussey-Lepoutre C et al. 2018. Germline mutations in the mitochondrial 2-oxoglutarate/malate carrier SLC25A11 gene confer a predisposition to metastatic paragangliomas. Cancer Res 78:1914–22
    [Google Scholar]
  22. Burnichon N, Briere J-J, Libe R, Vescovo L, Riviere J et al. 2010. SDHA is a tumor suppressor gene causing paraganglioma. Hum. Mol. Genet. 19:3011–20
    [Google Scholar]
  23. Burnichon N, Mazzella JM, Drui D, Amar L, Bertherat J et al. 2017. Risk assessment of maternally inherited SDHD paraganglioma and phaeochromocytoma. J. Med. Genet. 54:125–33
    [Google Scholar]
  24. Burr SP, Costa ASH, Grice GL, Timms RT, Lobb IT et al. 2016. Mitochondrial protein lipoylation and the 2-oxoglutarate dehydrogenase complex controls HIF1α stability in aerobic conditions. Cell Metab 24:740–52
    [Google Scholar]
  25. Calsina B, Curras-Freixes M, Buffet A, Pons T, Contreras L et al. 2018. Role of MDH2 pathogenic variant in pheochromocytoma and paraganglioma patients. Genet. Med. 20:1652–62
    [Google Scholar]
  26. Cancer Genome Atlas Res. Netw 2016. Comprehensive molecular characterization of papillary renal-cell carcinoma. New Engl. J. Med. 374:135–45
    [Google Scholar]
  27. Cardaci S, Zheng L, MacKay G, van den Broek NJF, MacKenzie ED et al. 2015. Pyruvate carboxylation enables growth of SDH-deficient cells by supporting aspartate biosynthesis. Nat. Cell Biol. 17:1317–26
    [Google Scholar]
  28. Cascon A, Comino-Mendez I, Curras-Freixes M, de Cubas AA, Contreras L et al. 2015. Whole-exome sequencing identifies MDH2 as a new familial paraganglioma gene. J. Natl. Cancer Inst. 107:djv053
    [Google Scholar]
  29. Chen Y-B, Brannon AR, Toubaji A, Dudas ME, Won HH et al. 2014. Hereditary leiomyomatosis and renal cell carcinoma syndrome-associated renal cancer: recognition of the syndrome by pathologic features and the utility of detecting aberrant succination by immunohistochemistry. Am. J. Surg. Pathol. 38:627–37
    [Google Scholar]
  30. Clark GR, Sciacovelli M, Gaude E, Walsh DM, Kirby G et al. 2014. Germline FH mutations presenting with pheochromocytoma. J. Clin. Endocrinol. Metab. 99:E2046–50
    [Google Scholar]
  31. Dang L, Su S-SM. 2017. Isocitrate dehydrogenase mutation and (R)-2-hydroxyglutarate: from basic discovery to therapeutics development. Annu. Rev. Biochem. 86:305–31
    [Google Scholar]
  32. Dénes J, Swords F, Rattenberry E, Stals K, Owens M et al. 2015. Heterogeneous genetic background of the association of pheochromocytoma/paraganglioma and pituitary adenoma: results from a large patient cohort. J. Clin. Endocr. Metab. 100:E531–41
    [Google Scholar]
  33. Ewbank C, Kerrigan JF, Aleck K 2006. Fumarate hydratase deficiency. GeneReviews MP Adam, updated April 4, 2013 Seattle, WA: Univ. Wash https://www.ncbi.nlm.nih.gov/books/NBK1506/
    [Google Scholar]
  34. Ford GC, Eichele G, Jansonius JN 1980. Three-dimensional structure of a pyridoxal-phosphate-dependent enzyme, mitochondrial aspartate aminotransferase. PNAS 77:2559–63
    [Google Scholar]
  35. Frezza C, Zheng L, Folger O, Rajagopalan KN, MacKenzie ED et al. 2011. Haem oxygenase is synthetically lethal with the tumour suppressor fumarate hydratase. Nature 477:225–28
    [Google Scholar]
  36. Gaal J, van Nederveen FH, Erlic Z, Korpershoek E, Oldenburg R et al. 2009. Parasympathetic paragangliomas are part of the Von Hippel-Lindau syndrome. J. Clin. Endocrinol. Metab. 94:4367–71
    [Google Scholar]
  37. GCO (Global Cancer Obs.) 2019. Cancer fact sheet: all cancers Fact Sheet, Int. Agency Res. Cancer, World Health Organ http://gco.iarc.fr/today/data/factsheets/cancers/39-All-cancers-fact-sheet.pdf
  38. Gerken T, Girard CA, Tung Y-CL, Webby CJ, Saudek V et al. 2007. The obesity-associated FTO gene encodes a 2-oxoglutarate-dependent nucleic acid demethylase. Science 318:1469–72
    [Google Scholar]
  39. Gimm O, Armanios M, Dziema H, Neumann HP, Eng C 2000. Somatic and occult germ-line mutations in SDHD, a mitochondrial complex II gene, in nonfamilial pheochromocytoma. Cancer Res 60:6822–25
    [Google Scholar]
  40. Grønborg S, Darin N, Miranda MJ, Damgaard B, Cayuela JA et al. 2016. Leukoencephalopathy due to complex II deficiency and bi-allelic SDHB mutations: further cases and implications for genetic counselling. JIMD Rep 33:69–77
    [Google Scholar]
  41. Haller F, Moskalev EA, Faucz FR, Barthelmeß S, Wiemann S et al. 2014. Aberrant DNA hypermethylation of SDHC: a novel mechanism of tumor development in Carney triad. Endocr.-Rel. Cancer 21:567–77
    [Google Scholar]
  42. Helman G, Caldovic L, Whitehead MT, Simons C, Brockmann K et al. 2016. Magnetic resonance imaging spectrum of succinate dehydrogenase-related infantile leukoencephalopathy. Ann. Neurol. 79:3379–86
    [Google Scholar]
  43. Hensen EF, Jordanova ES, van Minderhout IJ, Hogendoorn PC, Taschner PE et al. 2004. Somatic loss of maternal chromosome 11 causes parent-of-origin-dependent inheritance in SDHD-linked paraganglioma and phaeochromocytoma families. Oncogene 23:4076–83
    [Google Scholar]
  44. Hethcote HW, Knudson AG Jr 1978. Model for the incidence of embryonal cancers: application to retinoblastoma. PNAS 75:2453–57
    [Google Scholar]
  45. Hoekstra AS, Bayley JP. 2013. The role of complex II in disease. Biochim. Biophys. Acta 1827:543–51
    [Google Scholar]
  46. Hoekstra AS, de Graaff MA, Briaire-de Bruijn IH, Ras C, Seifar RM et al. 2015. Inactivation of SDH and FH cause loss of 5hmC and increased H3K9me3 in paraganglioma/pheochromocytoma and smooth muscle tumors. Oncotarget 6:38777–88
    [Google Scholar]
  47. Isaacs JS, Jung YJ, Mole DR, Lee S, Torres-Cabala C et al. 2005. HIF overexpression correlates with biallelic loss of fumarate hydratase in renal cancer: novel role of fumarate in regulation of HIF stability. Cancer Cell 8:143–53
    [Google Scholar]
  48. Jackson CB, Nuoffer JM, Hahn D, Prokisch H, Haberberger B et al. 2014. Mutations in SDHD lead to autosomal recessive encephalomyopathy and isolated mitochondrial complex II deficiency. J. Med. Genet. 51:170–75
    [Google Scholar]
  49. Jain-Ghai S, Cameron JM, Al Maawali A, Blaser S, MacKay N et al. 2013. Complex II deficiency—a case report and review of the literature. Am. J. Med. Genet. A 161:285–94
    [Google Scholar]
  50. Janeway KA, Kim SY, Lodish M, Nosé V, Rustin P et al. 2011. Defects in succinate dehydrogenase in gastrointestinal stromal tumors lacking KIT and PDGFRA mutations. PNAS 108:314–18
    [Google Scholar]
  51. Jia G, Fu Y, Zhao X, Dai Q, Zheng G et al. 2011. N6-methyladenosine in nuclear RNA is a major substrate of the obesity-associated FTO. Nat. Chem. Biol. 7:885–87
    [Google Scholar]
  52. Kerins MJ, Vashisht AA, Liang BX-T, Duckworth SJ, Praslicka BJ et al. 2017. Fumarate mediates a chronic proliferative signal in fumarate hydratase-inactivated cancer cells by increasing transcription and translation of ferritin genes. Mol. Cell. Biol. 37:e00079–17
    [Google Scholar]
  53. Kerrigan JF, Aleck KA, Tarby TJ, Bird CR, Heidenreich RA 2000. Fumaric aciduria: clinical and imaging features. Ann. Neurol. 47:583–88
    [Google Scholar]
  54. Killian JK, Kim SY, Miettinen M, Smith C, Merino M et al. 2013. Succinate dehydrogenase mutation underlies global epigenomic divergence in gastrointestinal stromal tumor. Cancer Discov 3:648–57
    [Google Scholar]
  55. Knudson AG Jr 1971. Mutation and cancer: statistical study of retinoblastoma. PNAS 68:820–23
    [Google Scholar]
  56. Kranendijk M, Struys EA, Salomons GS, Van der Knaap MS, Jakobs C 2012. Progress in understanding 2-hydroxyglutaric acidurias. J. Inherit. Metab. Dis. 35:571–87
    [Google Scholar]
  57. Kranendijk M, Struys EA, van Schaftingen E, Gibson KM, Kanhai WA et al. 2010. IDH2 mutations in patients with d-2-hydroxyglutaric aciduria. Science 330:336
    [Google Scholar]
  58. Kulkarni RA, Bak DW, Wei D, Bergholtz SE, Briney CA et al. 2019. A chemoproteomic portrait of the oncometabolite fumarate. Nat. Chem. Biol. 15:391–400
    [Google Scholar]
  59. Ladroue C, Carcenac R, Leporrier M, Gad S, Le Hello C et al. 2008. PHD2 mutation and congenital erythrocytosis with paraganglioma. New Engl. J. Med. 359:2685–92
    [Google Scholar]
  60. Laukka T, Mariani CJ, Ihantola T, Cao JZ, Hokkanen J et al. 2016. Fumarate and succinate regulate expression of hypoxia-inducible genes via TET enzymes. J. Biol. Chem. 291:4256–65
    [Google Scholar]
  61. Launonen V, Vierimaa O, Kiuru M, Isola J, Roth S et al. 2001. Inherited susceptibility to uterine leiomyomas and renal cell cancer. PNAS 98:3387–92
    [Google Scholar]
  62. Lehtonen HJ, Kiuru M, Ylisaukko-Oja SK, Salovaara R, Herva R et al. 2006. Increased risk of cancer in patients with fumarate hydratase germline mutation. J. Med. Genet. 43:523–26
    [Google Scholar]
  63. Letouze E, Martinelli C, Loriot C, Burnichon N, Abermil N et al. 2013. SDH mutations establish a hypermethylator phenotype in paraganglioma. Cancer Cell 23:739–52
    [Google Scholar]
  64. Loriot C, Domingues M, Berger A, Menara M, Ruel M et al. 2015. Deciphering the molecular basis of invasiveness in Sdhb-deficient cells. Oncotarget 6:32955–65
    [Google Scholar]
  65. Lu KH, Wood ME, Daniels M, Burke C, Ford J et al. 2014. American Society of Clinical Oncology Expert Statement: collection and use of a cancer family history for oncology providers. J. Clin. Oncol. 32:833–40
    [Google Scholar]
  66. Maradin M, Fumic K, Hansikova H, Tesarova M, Wenchich L et al. 2006. Fumaric aciduria: mild phenotype in a 8-year-old girl with novel mutations. J. Inherit. Metab. Dis. 29:683
    [Google Scholar]
  67. Menko FH, Maher ER, Schmidt LS, Middelton LA, Aittomaki K et al. 2014. Hereditary leiomyomatosis and renal cell cancer (HLRCC): renal cancer risk, surveillance and treatment. Fam. Cancer 13:637–44
    [Google Scholar]
  68. Merino MJ, Torres-Cabala C, Pinto P, Linehan WM 2007. The morphologic spectrum of kidney tumors in hereditary leiomyomatosis and renal cell carcinoma (HLRCC) syndrome. Am. J. Surg. Pathol. 31:1578–85
    [Google Scholar]
  69. Minarik P, Tomaskova N, Kollarova M, Antalik M 2002. Malate dehydrogenases—structure and function. Gen. Physiol. Biophys. 21:257–65
    [Google Scholar]
  70. Molenaar R, Sanikommu SR, Patel BJ, Przychodzen B, van Noorden CJ et al. 2015. Whole-exome sequencing identifies germline IDH2 and IDH3 mutations that predispose to myeloid neoplasms. Blood 126:1405
    [Google Scholar]
  71. Monk D, Mackay DJG, Eggermann T, Maher ER, Riccio A 2019. Genomic imprinting disorders: lessons on how genome, epigenome and environment interact. Nat. Rev. Genet. 20:235–48
    [Google Scholar]
  72. Muller M, Ferlicot S, Guillaud-Bataille M, Le Teuff G, Genestie C et al. 2017. Reassessing the clinical spectrum associated with hereditary leiomyomatosis and renal cell carcinoma syndrome in French FH mutation carriers. Clin. Genet. 92:606–15
    [Google Scholar]
  73. Musrati RA, Kollarova M, Mernik N, Mikulasova D 1998. Malate dehydrogenase: distribution, function and properties. Gen. Physiol. Biophys. 17:193–210
    [Google Scholar]
  74. Niemann S, Müller U. 2000. Mutations in SDHC cause autosomal dominant paraganglioma, type 3. Nat. Genet. 26:268–70
    [Google Scholar]
  75. NGSnPPGL (Next-Generation Sequencing in Phaechromocytomas and Paragangliomas) Study Group 2017. Consensus Statement on next-generation-sequencing-based diagnostic testing of hereditary phaeochromocytomas and paragangliomas. Nat. Rev. Endocrinol. 13:233–47
    [Google Scholar]
  76. Ochoa-Rapáraz J, Mielcarz DW, Begum-Haque S, Kasper LH 2010. Gut, bugs, and brain: role of commensal bacteria in the control of central nervous system disease. Ann. Neurol. 69:240–47
    [Google Scholar]
  77. Okur V, Chung WK. 2017. The impact of hereditary cancer gene panels on clinical care and lessons learned. Cold Spring Harb. Mol. Case Stud. 3:a002154
    [Google Scholar]
  78. Ooi A, Wong J-C, Petillo D, Roossien D, Perrier-Trudova V et al. 2011. An antioxidant response phenotype shared between hereditary and sporadic type 2 papillary renal cell carcinoma. Cancer Cell 20:511–23
    [Google Scholar]
  79. Ottolenghi C, Hubert L, Allanore Y, Brassier A, Altuzarra C et al. 2011. Clinical and biochemical heterogeneity associated with fumarase deficiency. Hum. Mutat. 32:1046–52
    [Google Scholar]
  80. Palmieri F. 2004. The mitochondrial transporter family (SLC25): physiological and pathological implications. Pflügers Arch 447:689–709
    [Google Scholar]
  81. Papathomas TG, Oudijk L, Persu A, Gill AJ, van Nederveen F et al. 2015. SDHB/SDHA immunohistochemistry in pheochromocytomas and paragangliomas: a multicenter interobserver variation analysis using virtual microscopy: a Multinational Study of the European Network for the Study of Adrenal Tumors (ENS@T). Mod. Pathol. 28:807–21
    [Google Scholar]
  82. Phillips TM, Gibson JB, Ellison DA 2006. Fumarate hydratase deficiency in monozygotic twins. Pediatr. Neurol. 35:150–53
    [Google Scholar]
  83. Pollard PJ, Briere JJ, Alam NA, Barwell J, Barclay E et al. 2005a. Accumulation of Krebs cycle intermediates and over-expression of HIF1α in tumours which result from germline FH and SDH mutations. Hum. Mol. Genet. 14:2231–39
    [Google Scholar]
  84. Pollard PJ, Wortham N, Barclay E, Alam A, Elia G et al. 2005b. Evidence of increased microvessel density and activation of the hypoxia pathway in tumours from the hereditary leiomyomatosis and renal cell cancer syndrome. J. Pathol. 205:41–49
    [Google Scholar]
  85. Rasheed MRHA, Tarjan G. 2018. Succinate dehydrogenase complex: an updated review. Arch. Pathol. Lab. Med. 142:1564–70
    [Google Scholar]
  86. Reed WB, Walker R, Horowitz R 1973. Cutaneous leiomyomata with uterine leiomyomata. Acta Derm. Venereol. 53:409–16
    [Google Scholar]
  87. Remacha L, Comino-Mendez I, Richter S, Contreras L, Curras-Freixes M et al. 2017. Targeted exome sequencing of Krebs cycle genes reveals candidate cancer-predisposing mutations in pheochromocytomas and paragangliomas. Clin. Cancer Res. Res. 23:6315–24
    [Google Scholar]
  88. Remacha L, Pirman D, Mahoney CE, Coloma J, Calsina B et al. 2019. Recurrent germline DLST mutations in individuals with multiple pheochromocytomas and paragangliomas. Am. J. Hum. Genet. 104:651–64
    [Google Scholar]
  89. Ricketts CJ, De Cubas AA, Fan H, Smith CC, Lang M et al. 2018. The Cancer Genome Atlas comprehensive molecular characterization of renal cell carcinoma. Cell Rep 23:313–26.e5
    [Google Scholar]
  90. Ricketts CJ, Woodward ER, Killick P, Morris MR, Astuti D et al. 2008. Germline SDHB mutations and familial renal cell carcinoma. J. Natl. Cancer Inst. 100:1260–62
    [Google Scholar]
  91. Rutter J, Winge DR, Schiffman JD 2010. Succinate dehydrogenase—assembly, regulation and role in human disease. Mitochondrion 10:393–401
    [Google Scholar]
  92. Schimke RN, Collins DL, Stolle CA 2010. Paraganglioma, neuroblastoma, and a SDHB mutation: resolution of a 30-year-old mystery. Am. J. Med. Genet. A 152:1531–35
    [Google Scholar]
  93. Sciacovelli M, Goncalves E, Johnson TI, Zecchini VR, da Costa ASH et al. 2016. Fumarate is an epigenetic modifier that elicits epithelial-to-mesenchymal transition. Nature 537:544–47
    [Google Scholar]
  94. Selak MA, Armour SM, MacKenzie ED, Boulahbel H, Watson DG et al. 2005. Succinate links TCA cycle dysfunction to oncogenesis by inhibiting HIF-α prolyl hydroxylase. Cancer Cell 7:77–85
    [Google Scholar]
  95. Smestad J, Erber L, Chen Y, Maher LJ III 2018. Chromatin succinylation correlates with active gene expression and is perturbed by defective TCA cycle metabolism. iScience 2:63–75
    [Google Scholar]
  96. Stadler ZK, Thom P, Robson ME, Weitzel JN, Kauff ND et al. 2010. Genome-wide association studies of cancer. J. Clin. Oncol. 28:4255–67
    [Google Scholar]
  97. Sulkowski PL, Sundaram RK, Oeck S, Corso CD, Liu Y et al. 2018. Krebs-cycle-deficient hereditary cancer syndromes are defined by defects in homologous-recombination DNA repair. Nat. Genet. 50:1086–92
    [Google Scholar]
  98. Sullivan LB, Martinez-Garcia E, Nguyen H, Mullen AR, Dufour E et al. 2013. The proto-oncometabolite fumarate binds glutathione to amplify ROS-dependent signaling. Mol. Cell 51:236–48
    [Google Scholar]
  99. Taïeb D, Kaliski A, Boedeker CC, Martucci V, Fojo T et al. 2014. Current approaches and recent developments in the management of head and neck paragangliomas. Endocr. Rev. 35:795–819
    [Google Scholar]
  100. Taylor RW, Birch-Machin MA, Schaefer J, Taylor L, Shakir R et al. 1996. Deficiency of complex II of the mitochondrial respiratory chain in late-onset optic atrophy and ataxia. Ann. Neurol. 39:224–32
    [Google Scholar]
  101. Thienpont B, Steinbacher J, Zhao H, D'Anna F, Kuchnio A et al. 2016. Tumour hypoxia causes DNA hypermethylation by reducing TET activity. Nature 537:63–68
    [Google Scholar]
  102. Tischler AS. 2008. Pheochromocytoma and extra-adrenal paraganglioma: updates. Arch. Pathol. Lab Med. 132:1272–84
    [Google Scholar]
  103. Tomlinson IPM, Alam NA, Rowan AJ, Barclay E, Jaeger EEM et al. 2002. Germline mutations in FH predispose to dominantly inherited uterine fibroids, skin leiomyomata and papillary renal cell cancer. Nat. Genet. 30:406–10
    [Google Scholar]
  104. Tong W-H, Sourbier C, Kovtunovych G, Jeong SY, Vira M et al. 2011. The glycolytic shift in fumarate-hydratase-deficient kidney cancer lowers AMPK levels, increases anabolic propensities and lowers cellular iron levels. Cancer Cell 20:315–27
    [Google Scholar]
  105. Tyrakis PA, Yurkovich ME, Sciacovelli M, Papachristou EK, Bridges HR et al. 2017. Fumarate hydratase loss causes combined respiratory chain defects. Cell Rep 21:1036–47
    [Google Scholar]
  106. Urbini M, Astolfi A, Indio V, Heinrich MC, Corless CL et al. 2015. SDHC methylation in gastrointestinal stromal tumors (GIST): a case report. BMC Med. Genet. 16:87
    [Google Scholar]
  107. van Nederveen FH, Gaal J, Favier J, Korpershoek E, Oldenburg RA et al. 2009. An immunohistochemical procedure to detect patients with paraganglioma and phaeochromocytoma with germline SDHB, SDHC, or SDHD gene mutations: a retrospective and prospective analysis. Lancet Oncol 10:764–71
    [Google Scholar]
  108. Van Vranken JG, Na U, Winge DR, Rutter J 2015. Protein-mediated assembly of succinate dehydrogenase and its cofactors. Crit. Rev. Biochem. Mol. Biol. 50:168–80
    [Google Scholar]
  109. Vandermey AGL, Maaswinkelmooy PD, Cornelisse CJ, Schmidt PH, Vandekamp JJP 1989. Genomic imprinting in hereditary glomus tumors—evidence for new genetic theory. Lancet 2:1291–94
    [Google Scholar]
  110. Vanharanta S, Buchta M, McWhinney SR, Virta SK, Peczkowska M et al. 2004. Early-onset renal cell carcinoma as a novel extraparaganglial component of SDHB-associated heritable paraganglioma. Am. J. Hum. Genet. 74:153–59
    [Google Scholar]
  111. Vatrinet R, Leone G, De Luise M, Girolimetti G, Vidone M et al. 2017. The α-ketoglutarate dehydrogenase complex in cancer metabolic plasticity. Cancer Metab 5:3
    [Google Scholar]
  112. Wang G, Rao P. 2018. Succinate dehydrogenase-deficient renal cell carcinoma: a short review. Arch. Pathol. Lab. Med. 142:1284–88
    [Google Scholar]
  113. Warburg O. 1924. Über den Stoffwechsel der Carcinomzelle. Naturwissenschaften 12:1131–37
    [Google Scholar]
  114. Weinert BT, Scholz C, Wagner SA, Iesmantavicius V, Su D et al. 2013. Lysine succinylation is a frequently occurring modification in prokaryotes and eukaryotes and extensively overlaps with acetylation. Cell Rep 4:842–51
    [Google Scholar]
  115. Whelan DT, Hill RE, McClorry S 1983. Fumaric aciduria: a new organic aciduria, associated with mental retardation and speech impairment. Clinica Chim. Acta 132:301–8
    [Google Scholar]
  116. Williams MD. 2017. Paragangliomas of the head and neck: an overview from diagnosis to genetics. Head Neck Pathol 11:278–87
    [Google Scholar]
  117. Wong MY, Andrews KA, Challis BG, Park SM, Acerini CL et al. 2019. Clinical practice guidance: surveillance for phaeochromocytoma and paraganglioma in paediatric succinate dehydrogenase gene mutation carriers. Clin. Endocrinol. 90:499–505
    [Google Scholar]
  118. Xiao M, Yang H, Xu W, Ma S, Lin H et al. 2012. Inhibition of α-KG-dependent histone and DNA demethylases by fumarate and succinate that are accumulated in mutations of FH and SDH tumor suppressors. Genes Dev 26:1326–38
    [Google Scholar]
  119. Yang C, Hong CS, Prchal JT, Balint MT, Pacak K, Zhuang Z 2015a. Somatic mosaicism of EPAS1 mutations in the syndrome of paraganglioma and somatostatinoma associated with polycythemia. Hum. Genome Var. 2:15053
    [Google Scholar]
  120. Yang C, Zhuang Z, Fliedner SMJ, Shankavaram U, Sun MG et al. 2015b. Germ-line PHD1 and PHD2 mutations detected in patients with pheochromocytoma/paraganglioma-polycythemia. J. Mol. Med. 93:93–104
    [Google Scholar]
  121. Yang M, Ternette N, Su H, Dabiri R, Kessler BM et al. 2014. The succinated proteome of FH-mutant tumours. Metabolites 4:640–54
    [Google Scholar]
  122. Yogev O, Naamati A, Pines O 2011. Fumarase: a paradigm of dual targeting and dual localized functions. FEBS J 278:4230–42
    [Google Scholar]
  123. Zhao R, Choi BY, Lee M-H, Bode AM, Dong Z 2016. Implications of genetic and epigenetic alterations of CDKN2A (p16INK4a) in cancer. EBioMedicine 8:30–39
    [Google Scholar]
  124. Zheng L, Cardaci S, Jerby L, MacKenzie ED, Sciacovelli M et al. 2015. Fumarate induces redox-dependent senescence by modifying glutathione metabolism. Nat. Commun. 6:6001
    [Google Scholar]
  125. Zheng L, MacKenzie ED, Karim SA, Hedley A, Blyth K et al. 2013. Reversed argininosuccinate lyase activity in fumarate hydratase-deficient cancer cells. Cancer Metab 1:12
    [Google Scholar]
/content/journals/10.1146/annurev-cancerbio-030419-033612
Loading
/content/journals/10.1146/annurev-cancerbio-030419-033612
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error