Skip to main content

Advertisement

Log in

8-Ethynylxanthines as promising antiproliferative agents, angiogenesis inhibitors, and calcium channel activity modulators

  • Published:
Chemistry of Heterocyclic Compounds Aims and scope

Synthetic procedures for the preparation of 8-ethynylxanthines by treating 8-bromocaffeine and 8-bromopentoxifylline with terminal acetylenes were elaborated. Certain ethynylxanthine derivatives exhibit high in vitro antiproliferative activity against a panel of cancer cell lines, matrix metalloproteinase and in vitro angiogenesis inhibitory activity. Ca2+ channel blocking and agonist activity of the synthesized ethynylxanthines was discussed based on data obtained on the H9C2, SH-SY5Y, and A7R5 cell lines.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1.
Figure 2.
Figure 3.
Figure 4.

Similar content being viewed by others

References

  1. Jemal, A.; Bray, F.; Center, M. M.; Ferlay, J.; Ward, E.; Forman, D. Ca–Cancer J. Clin. 2011, 61, 69.

    Article  Google Scholar 

  2. Jemal, A.; Siegel, R.; Xu, J.; Ward, E. Ca–Cancer J. Clin. 2010, 60, 277.

    Article  Google Scholar 

  3. Siegel, R. L.; Miller, K. D.; Jemal, A. Ca–Cancer J. Clin. 2017, 67, 7.

    Article  Google Scholar 

  4. Siegal, T. J. Neuro-Oncology 2013, 15, 656.

    Article  CAS  Google Scholar 

  5. Lampson, L. A. Drug Discovery Today 2009, 14, 185.

    Article  CAS  Google Scholar 

  6. Huse, J. T.; Holland, E. C. Nat. Rev. Cancer 2010, 10, 319.

    Article  CAS  Google Scholar 

  7. Wilson, K. M.; Kasperzyk, J. L.; Rider, J. R.; Kenfield, S.; van Dam, R. M.; Stampfer, M. J.; Giovannucci, E.; Mucci, L. A. J. Nat. Cancer Inst. 2010, 103, 876.

    Article  Google Scholar 

  8. Geybels, M. S.; Neuhouser, M. L.; Wright, J. L.; Stott-Miller, M.; Stanford, J. L. Cancer, Causes Control 2013, 24, 1947.

    Article  Google Scholar 

  9. Bravi, F.; Bosetti, C.; Tavani, A.; Bagnardi, V.; Gallus, S.; Negri, E.; Franceschi, S.; La Vecchia, C. Hepatology 2007, 46, 430.

    Article  Google Scholar 

  10. Yamamoto, N.; Tsuchiya, H. J. Caffeine Res. 2011, 1, 163.

    Article  CAS  Google Scholar 

  11. Hayashi, M.; Tsuchiya, H.; Yamamoto, N.; Karita, M.; Shirai, T.; Nishida, H.; Takeuchi, A.; Tomita, K. Anticancer Res. 2005, 25, 2399.

    PubMed  Google Scholar 

  12. Ding, R.; Shi, J.; Pabon, K.; Scotto, K. W. Mol. Pharmacol. 2012, 81, 328.

    Article  CAS  Google Scholar 

  13. Vartanyan, L. P.; Kolesova, M. B.; Gornaeva, G. F.; Pustovalov, Yu. I. Psychopharmacol. Biol. Narcol. [In Russian] 2005, 5, 1093.

  14. Rybár, A.; Pfleiderer, W. Collect. Czeh. Chem. Commun. 1987, 52, 2730.

    Article  Google Scholar 

  15. Soltani Rad, M. N.; Behrouz, S.; Nekoei, A.-R. Synlett 2012, 1191.

  16. Arsenyan, P.; Rubina, K.; Vasiljeva, J.; Belyakov, S. Tetrahedron Lett. 2013, 54, 6524.

    Article  CAS  Google Scholar 

  17. Schafer, B.; Gschwind, A.; Ullrich, A. Oncogene 2004, 23, 991.

    Article  Google Scholar 

  18. Yamazaki, D.; Kurisu, S.; Takenawa, T. Cancer Sci. 2005, 96, 379.

    Article  CAS  Google Scholar 

  19. Ridley, A. J.; Schwartz, M. A.; Burridge, K.; Firtel, R. A.; Ginsberg, M. H.; Borisy, G.; Parsons, J. T.; Horwitz, A. R. Science 2003, 302, 1704.

    Article  CAS  Google Scholar 

  20. Berridge, M. J.; Bootman, M. D.; Lipp, P. Nature 1998, 395, 645.

    Article  CAS  Google Scholar 

  21. Rousseau, E.; Ladine, J.; Liu, Q.-Y.; Meissner, G. Arch. Biochem. Biophys. 1988, 267, 75.

    Article  CAS  Google Scholar 

  22. Garavito-Aguilar, Z. V.; Recio-Pinto, E.; Corrales, A. V.; Zhang, J.; Blanck, T. J. J.; Xu, F. Brain Res. 2004, 1011, 177.

    Article  CAS  Google Scholar 

  23. Rucins, M.; Gosteva, M.; Domracheva, I.; Kanepe-Lapsa, I.; Belyakov, S.; Plotniece, M.; Pajuste, K.; Cekavicus, B.; Jekabsone, M.; Sobolev, A.; Shestakova, I.; Plotniece, А. Chem. Heterocycl. Compd. 2015, 50, 1432. [Khim. Geterotsikl. Soedin. 2014, 1557.]

  24. Berridge, M. J. Neuron 1998, 21, 13.

    Article  CAS  Google Scholar 

  25. Verkhratsky, A. Physiol. Rev. 2005, 85, 201.

    Article  CAS  Google Scholar 

  26. Fleischer, S.; Inui, M. Prog. Clin. Biol. Res. 1988, 273, 435.

    CAS  PubMed  Google Scholar 

  27. Thomas, N. L.; Williams, A. J. Wiley Interdiscip. Rev.: Membr. Transp. Signaling2012, 1, 383.

    CAS  Google Scholar 

  28. Arsenyan, P.; Vasiljeva, J.; Ivanova, A.; Belyakov, S. Mendeleev Commun. 2019, 29, 96.

    Article  CAS  Google Scholar 

  29. Schwarz Pharma AG. EP Patent EP1939197 A1, 2008.

  30. Mosmann, T. J. Immunol. Methods 1983, 65, 55.

    Article  CAS  Google Scholar 

  31. Ponce, M. L. In Angiogenesis Protocols; Murray, J. C., Ed.; Humana Press, 2001, p. 205.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pavel Arsenyan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Arsenyan, P., Vasiljeva, J., Domracheva, I. et al. 8-Ethynylxanthines as promising antiproliferative agents, angiogenesis inhibitors, and calcium channel activity modulators. Chem Heterocycl Comp 56, 776–785 (2020). https://doi.org/10.1007/s10593-020-02730-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10593-020-02730-4

Keywords

Navigation