Skip to main content
Log in

Selective Urease Inhibitory and Antimicrobial Activities of Transition Metal Complexes of Amino Acid Bearing Schiff Base Ligand: Thermal Degradation Behavior of Complexes

  • Published:
Pharmaceutical Chemistry Journal Aims and scope

Amino acid derived Schiff base ligand [1-({[(Z)-(2-hydroxynaphthalen-1-yl)methylidene]-amino}methyl)-cyclohexyl]acetic acid (H-HMAC) and its metal complexes with composition [M(HMAC)2] [M = Co(II), Ni(II), Cu(II), and Zn(II)] reported previously were studied for their thermal degradation, antimicrobial and inhibitory activities against the enzymes like urease, α-chymotrypsin, acetylcholinesterase and butyrylcholinesterase. Only a zinc-based compound of the zwitter-ion ligand has been found to inhibit the urease activity with IC50= 0.04 ± 0.01 μ M (value ± SEM), which is 400 times better than the standard reference drug used. Metal coordination with zinc improved the bioactivity and deserved for selective urease inhibitor development. The inhibitory activity was structurally rationalized by carrying out the molecular modeling studies using AutoDock software. The same metal complex was also observed to inhibit the activity of Candida albicans. The thermal degradation studies suggest that the order of stability and activation energies of all compounds is as follows: Cu < H-HMAC < Ni < Co = Zn and E*Zn> E*Co> E*Ni> E*Cu, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Scheme 1.
Scheme 2.
Scheme 3.
Scheme 4.
Scheme 5.

Similar content being viewed by others

References

  1. A. V. Bar, Rev. Recent Clin. Trials, 5(3), 174 – 178 (2010).

    Google Scholar 

  2. K.-Y. Ho, T. J. Gan, and A. S. Habib, Pain, 126(1 – 3), 91 – 101 (2006).

    CAS  PubMed  Google Scholar 

  3. M. A. Rose and P. C. Kam, Anaesthesia, 57, 451 – 462 (2002).

    CAS  PubMed  Google Scholar 

  4. P. J. Wiffen, H. J. McQuay, J. E. Edwards, and R. A. Moore, Cochrane Database Syst. Rev., CD005452 (2005).

    Google Scholar 

  5. M. Backonja, A. Beydoun, K. R. Edwards, et al., JAMA, 280, 1831 – 1836 (1998).

    CAS  PubMed  Google Scholar 

  6. M. I. Bennett and K. H. Simpson, Palliat Med., 18, 5 – 11 (2004).

    PubMed  Google Scholar 

  7. M. Rowbotham, N. Harden, B. Stacey, P. Bernstein, and L. Magnus-Miller, JAMA, 280, 1837 – 1842 (1998).

    CAS  PubMed  Google Scholar 

  8. A. C.van de Vusse, S. G. Stomp-van den Berg, A. H. Kessels, and W. E. Weber, BMC Neurol., 4, 13 (2004).

    PubMed  PubMed Central  Google Scholar 

  9. Z.-Q. Liu and D. Wu, J. Phys. Org. Chem., 22, 308 – 312 (2009).

    CAS  Google Scholar 

  10. Y.-Z. Tang and Z.-Q. Liu, Cell Biochem. Funct., 26, 185 – 191 (2008).

    CAS  PubMed  Google Scholar 

  11. Li Y.-F., Liu Z.-Q., Eur. J. Pharm. Sci., 44, 158 – 163 (2011).

    CAS  PubMed  Google Scholar 

  12. M. Ikram, S.-U. Rehman, S. Rehman, et al., Inorg. Chim. Acta, 390, 210 – 216 (2012).

    CAS  Google Scholar 

  13. P. Datta, A. P. Mukhopadhyay, P. Manna, et al., J. Inorg. Biochem., 105, 577 – 588 (2011).

    CAS  PubMed  Google Scholar 

  14. M. Ikram, S. Rehman, M. Ali, et al., Thermochim. Acta, 562C, 22 – 28 (2013).

    Google Scholar 

  15. M. Ikram, S. Rehman, M. Ali, et al., Thermochim. Acta, 555, 72 – 80 (2013).

    CAS  Google Scholar 

  16. P. G. Cozzi, Chem. Soc. Rev., 33, 410 – 421 (2004).

    CAS  PubMed  Google Scholar 

  17. H. Adams, N. A. Bailey, I. S. Baird, et al., Inorg. Chim. Acta, 101, 7 – 12 (1985).

    CAS  Google Scholar 

  18. R. Atkins, G. Brewer, E. Kokot, et al., Inorg. Chem., 24, 127 – 134 (1985).

    CAS  Google Scholar 

  19. B. D. Clercq and F. Verpoort, Macromolecules, 35, 8943 – 8947 (2002).

    Google Scholar 

  20. T. Opstal and F. Verpoort, Angew. Chem. Int. Ed., 42, 2876 – 2879 (2003).

    CAS  Google Scholar 

  21. T. Opstal and F. Verpoort, Synlett, 6, 935 – 942 (2002).

    Google Scholar 

  22. S. N. Pal and S. Pal, Inorg. Chem., 40, 4807-4810 (2001).

    CAS  PubMed  Google Scholar 

  23. B. D. Clercq and F. Verpoort, Adv. Synth. Catal., 34, 639 – 648 (2002).

    Google Scholar 

  24. B. D. Clercq, F. Lefebvre, and F. Verpoort, Appl. Catal. A 247, 345 – 364 (2003).

    Google Scholar 

  25. R. I. Kureshy, N. H. Khan, S. H. R. Abdi, et al., J. Mol. Catal. A: Chem., 150, 175 – 183 (1999).

    CAS  Google Scholar 

  26. M. Ikram, S. Rehman, A. Khan, et al., Inorg. Chim. Acta, 428, 117 – 126 (2015).

    CAS  Google Scholar 

  27. M. W. Weatherburn, Anal Chem., 39, 971 – 974 (1967).

    CAS  Google Scholar 

  28. I. Khan, S. Ali, S. Hameed, et al., Eur. J. Med. Chem., 45, 5200 – 5207 (2010).

    CAS  PubMed  Google Scholar 

  29. R. J. P. Cannell, S. J. Kellam, A. M. Owsianka, and J. M. Walker, Planta Med., 54, 10 – 14 (1988).

    CAS  PubMed  Google Scholar 

  30. G. L. Ellman, Arch. Biochem. Biophys., 74, 443 – 450 (1958).

    CAS  PubMed  Google Scholar 

  31. O. Trott and A. J. Olson, J. Comput. Chem., 31, 455 – 461 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Discovery Studio Modeling Environment, Release 3.5, Accelrys Software Inc., San Diego (2012).

    Google Scholar 

  33. Atta-ur-Rahman, M. I. Choudhary, and W. J. Thomsen, Bioassay Techniques for Drug Development, Harwood Academic, Amsterdam, The Netherlands (2001).

    Google Scholar 

  34. H. H. Horowitz and G. Metzger, Anal. Chem., 35(10), 1464 – 1468 (1963).

    CAS  Google Scholar 

  35. M. Olszak-Humienik and J. Mozejko, Thermochim. Acta, 344, 73 – 79 (2000).

    CAS  Google Scholar 

  36. A. Coblentz, J. Am. Geriatr. Soc. 16(9), 1039 – 1046 (1968).

    CAS  PubMed  Google Scholar 

  37. M. Arfan, M. Ali, H. Ahmad, et al., J. Enz. Inh. Med. Chem., 25, 296 – 299 (2010).

    CAS  Google Scholar 

  38. R. J. P. Cannell, S. J. Kellam, A. M. Owsianka, and J. M. Walker, Planta Med., 54, 10 – 14 (1988).

    CAS  PubMed  Google Scholar 

  39. L. Zhang, S. B. Mulrooney, A. F. K. Leung, et al., BioMetals, 19, 503 – 511 (2006).

    CAS  PubMed  Google Scholar 

  40. P. E.Wilcox, Chymotrypsinogens—Chymotrypsins, in: Methods in Enzymology, 19, 64 – 108 (1970).

    Google Scholar 

  41. F. A. Cotton, G. Wilkinson, and C. A. Murillo, Advanced Inorganic Chemistry, Wiley, New York (1999).

    Google Scholar 

  42. R. H. Holm, P. Kennepohl, and E. I. Solomon, Chem. Rev., 96, 2239 – 2314 (1996).

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muhammad Ikram.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ikram, M., Rehman, S., Akhtar, M.N. et al. Selective Urease Inhibitory and Antimicrobial Activities of Transition Metal Complexes of Amino Acid Bearing Schiff Base Ligand: Thermal Degradation Behavior of Complexes. Pharm Chem J 54, 469–477 (2020). https://doi.org/10.1007/s11094-020-02224-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11094-020-02224-9

Keywords

Navigation