Skip to main content
Log in

A theoretical study on the application of different carbonaceous nanostructures in K-ion batteries

  • Original Paper
  • Published:
Monatshefte für Chemie - Chemical Monthly Aims and scope Submit manuscript

Abstract

The possible usage of different carbon nanostructures, including C24 nanocage, carbon nanotube (CNT), and hexa-peri-hexabenzocoronene nanographene (HBC) is studied in the anode of K-ion batteries (KIBs) by DFT calculations. Based on the calculations, both of K and K+ species preferentially adsorb on the center of a hexagon of the studied nanostructures. The results show that the underlying mechanism of the K+ adsorption is the cation-π interaction, and by increasing the curvature of the adsorbents the interaction becomes weaker. When the curvature is reduced, the adsorption energy of the K atom becomes more positive and the adsorption mechanism changes from ionic to nonionic. This study suggests that the mechanism of the strength of K interaction and the structure curvature are the main factors in determining the cell voltage (Ucell) of the KIBs. The C24 cage generates a negative Ucell which is physically meaningless, and it cannot be used as an anode material. The CNT produces a very small Ucell of 0.09 V, while the HBC is suggested to be a proper nanostructure for use in the KIBs because of its large Ucell about 1.45 V.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig.5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Dahn JR, Zheng T, Liu Y, Xue J (1995) Science 270:590

    Article  CAS  Google Scholar 

  2. Johannes MD, Swider-Lyons K, Love CT (2016) Solid State Ionics 286:83

    Article  CAS  Google Scholar 

  3. Armand M, Tarascon J-M (2008) Nature 451:652

    Article  CAS  PubMed  Google Scholar 

  4. Kino K, Yonemura M, Ishikawa Y, Kamiyama T (2016) Solid State Ionics 288:257

    Article  CAS  Google Scholar 

  5. Palomares V, Serras P, Villaluenga I, Hueso KB, Carretero-González J, Rojo T (2012) Energy Environ Sci 5:5884

    Article  CAS  Google Scholar 

  6. Bagheri Z, Mirzaei M, Hadipour N, Abolhassani M (2008) J Comput Theor Nanosci 5:614

    Article  CAS  Google Scholar 

  7. Behmagham F, Asadi Z, Jamal Sadeghi Y (2018) Chem Rev Lett 1:68

    Google Scholar 

  8. Peyghan AA, Baei MT, Hashemian S, Torabi P (2013) J Mol Model 19:859

    Article  CAS  PubMed  Google Scholar 

  9. Hadipour NL, Ahmadi Peyghan A, Soleymanabadi H (2015) J Phys Chem C 119:6398

    Article  CAS  Google Scholar 

  10. Noei M, Peyghan AA (2013) J Mol Model 19:3843

    Article  CAS  PubMed  Google Scholar 

  11. Mirzaei M, Mirzaei M (2011) Solid State Sci 13:244

    Article  CAS  Google Scholar 

  12. Amir Siadati S, Kula K, Babanezhad E (2019) Chem Rev Lett 2:2

    Google Scholar 

  13. Esrafili MD (2019) Chem Rev Lett 2:19

    Google Scholar 

  14. Najafi E, Behmagham F, Shaabani N, Shojaei N (2019) Chem Rev Lett 2:13

    Google Scholar 

  15. Mirzaei M (2009) Monatsh Chem 140:1275

    Article  CAS  Google Scholar 

  16. Shakerzadeh E (2019) Monatsh Chem 150:1745

    Article  CAS  Google Scholar 

  17. Mirzaei M (2009) Zeitsch Phys Chem 223:815

    CAS  Google Scholar 

  18. Rastegar SF, Peyghan AA, Soleymanabadi H (2015) Phys E 68:22

    Article  CAS  Google Scholar 

  19. Winter M, Appel WK, Evers B, Hodal T, Möller KC, Schneider I, Wachtler M, Wagner MR, Wrodnigg GH, Besenhard JO (2001) Monatsh Chem 132:473

    Article  CAS  Google Scholar 

  20. Gao W, Yan L, Li Y, Najafi M (2019) Monatsh Chem 150:2025

    Article  CAS  Google Scholar 

  21. Peyghan AA, Noei M (2014) J Mex Chem Soc 58:46

    CAS  Google Scholar 

  22. Jafari A, Shareghi B, Hosseini-Koupaei M, Farhadian S (2020) Monatsh Chem 151:429

    Article  CAS  Google Scholar 

  23. Lee SW, Yabuuchi N, Gallant BM, Chen S, Kim B-S (2010) Nat Nanotech 5:531

    Article  CAS  Google Scholar 

  24. Ivanishchev AV, Churikov AV, Ivanishcheva IA (2017) Monatsh Chem 148:481

    Article  CAS  Google Scholar 

  25. Heidari M, Janjanpour N, Vakili M, Daneshmehr S, Jalalierad K, Alipour F (2018) Chem Rev Lett 1:45

    Google Scholar 

  26. Gao B, Kleinhammes A, Tang X, Bower C, Fleming L, Wu Y, Zhou O (1999) Chem Phys Lett 307:153

    Article  CAS  Google Scholar 

  27. Jang BZ, Zhamu A (2008) J Mater Sci 43:5092

    Article  CAS  Google Scholar 

  28. Gupta V, Chaudhary N, Srivastava R (2011) J Am Chem Soc 133:9960

    Article  CAS  PubMed  Google Scholar 

  29. Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson ME, Zhou C (2010) ACS Nano 4:2865

  30. Müllen K, Rabe JP (2008) Acc Chem Res 41:511

    Article  PubMed  CAS  Google Scholar 

  31. Hosseinian A, Gharachorloo A, Mohazzab Lighvani T, Delir Kheirollahi Nezhad P, Vessally E (2018) Appl Organ Chem 32:4486

  32. Iyer VS, Wehmeier M, Brand JD, Keegstra MA, Müllen K (1997) Ang Chem Int Ed 36:1604

    Article  CAS  Google Scholar 

  33. Salari AA (2017) C R Chim 20:758

    Article  CAS  Google Scholar 

  34. Chang Y, Zhang J, Sun H, Hong B, An Z, Wang R (2005) Int Quant Chem 105:142

    Article  CAS  Google Scholar 

  35. Bagheri Z (2016) Appl Surf Sci 383:294

    Article  CAS  Google Scholar 

  36. Baker TA, Head-Gordon M (2010) J Phys Chem A 114:10326

    Article  CAS  PubMed  Google Scholar 

  37. Dong M, He C, Zhang W (2017) J Mater Chem C 5:3830

    Article  CAS  Google Scholar 

  38. Meng YS, Arroyo-de Dompablo ME (2009) Energy Environ Sci 2:589

    Article  CAS  Google Scholar 

  39. Hosseinian A, Khosroshahi ES, Nejati K, Edjlali E, Vessally E (2017) J Mol Model 23:354

    Article  CAS  PubMed  Google Scholar 

  40. Zhang H, Zhao M, He X, Wang Z, Zhang X, Liu X (2011) J Phys Chem C 115:8845

    Article  CAS  Google Scholar 

  41. He C, Zhang J, Zhang W, Li T (2019) J Phys Chem C 123:5157

    Article  CAS  Google Scholar 

  42. Peyghan AA, Baei MT, Hashemian S, Torabi P (2013) J Clust Sci 24:591

    Article  CAS  Google Scholar 

  43. Peyghan AA, Baei MT, Hashemian S (2013) J Clust Sci 24:341

    Article  CAS  Google Scholar 

  44. Beheshtian J, Noei M, Soleymanabadi H, Peyghan AA (2013) Thin Solid Films 534:650

    Article  CAS  Google Scholar 

  45. Grimme S (2004) J Comput Chem 25:1463

    Article  CAS  PubMed  Google Scholar 

  46. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347

    Article  CAS  Google Scholar 

  47. Boys SF, Bernardi F (1970) Mol Phys 19:553

    Article  CAS  Google Scholar 

  48. O’Boyle N, Tenderholt A, Langner K (2008) J Comput Chem 29:839

    Article  PubMed  CAS  Google Scholar 

  49. Li T, He C, Zhang W (2019) J Mater Chem A 7:4134

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Major Project of National Social Sciences Fund (16ZDA011); National Science Foundation of China under grant (No. 71501031); Program Funded by Liaoning Province Education Administration (No. LN2017QN036).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianing Xie.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Song, X., Feng, H., Xie, J. et al. A theoretical study on the application of different carbonaceous nanostructures in K-ion batteries. Monatsh Chem 151, 1329–1336 (2020). https://doi.org/10.1007/s00706-020-02659-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00706-020-02659-6

Keywords

Navigation