Skip to main content
Log in

Ratcheting behavior of notched stainless steel samples subjected to asymmetric loading cycles

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The ratcheting response of 316 stainless steel samples at the vicinity of notch roots under single- and multi-step loading conditions is evaluated. Multi-step tests were conducted to examine local ratcheting at different low–high–high and high–low–low loading sequences. The stress levels over loading steps and their sequences highly influenced ratcheting magnitude and rate. The change of stress level from low to high promoted ratcheting over proceeding cycles while ratcheting strains dropped in magnitude for opposing sequence where stress level dropped from high to low. Local ratcheting strain values at the vicinity of notch root were found noticeably larger than nominal ratcheting values measured at farer distances from notch edge through use of strain gauges. Ratcheting values in both mediums of local and nominal were promoted as notch diameter increased. To assess progressive ratcheting response and stress relaxation concurrently, the Ahmadzadeh-Varvani (A-V) kinematic hardening rule was coupled with Neuber’s rule enabling to calculate local stress at notch root of steel samples. Local stress/strain values were progressed at notch root over applied asymmetric stress cycles resulting in ratcheting buildup through A-V model. The relaxation of stress values at a given peak-valley strain event was governed through the Neuber’s rule. Experimental ratcheting data were found agreeable with those predicted through the coupled framework.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(\bar{b}\) :

Internal variable of A-V model

d :

Circular notch diameter

\({\text{d}}\bar{\varepsilon }\) :

Total strain increment tensor

\({\text{d}}\bar{\varepsilon }_{\text{e}}\) :

Elastic strain increment tensor

\({\text{d}}\bar{\varepsilon }_{\text{p}}\) :

Plastic strain increment tensor

\({\text{d}}\bar{\sigma }\) :

Stress increment tensor

\({\text{d}}\bar{s}\) :

Deviatoric stress increment tensor

dp :

Increment of equivalent plastic strain

e :

Nominal strain

\(E\) :

Elastic modulus

\(k, m\) :

Material constants

\(K_{t}\) :

Stress concentration factor

\(k^{\prime}\) :

Cyclic strength coefficient

\(\bar{n}\) :

Unit normal vector to yield surface

\(n^{\prime}\) :

Cyclic strain hardening exponent

p :

Accumulated plastic strain

R :

Stress ratio

S :

Nominal stress

X :

Distance from notch root

α :

Axial backstress component

\(\bar{\alpha }\) :

Backstress tensor

\(\sigma_{\text{L}} , \varepsilon_{\text{L}}\) :

Local stress and strain components

\(\sigma_{y}\) :

Yield strength

\(\sigma_{\text{ult}}\) :

Ultimate strength

\(\gamma_{1} , \gamma_{2} , C, \delta\) :

Coefficients of A-V model

References

  1. A. Varvani-Farahani, A. Nayebi, Fatigue Fract. Eng. Mater. Struct. 41 (2018) 503–538.

    Article  Google Scholar 

  2. D. Yu, G. Chen, W. Yu, D. Li, X. Chen, Int. J. Plast. 28 (2012) 88–101.

    Article  Google Scholar 

  3. W. Wang, X. Zheng, J. Yu, W. Lin, C. Wang, J. Xu, Mater. High Temp. 32 (2017) 172–178.

    Article  Google Scholar 

  4. X. Zheng, J. Wang, J. Gao, L. Ma, J. Yu, J. Xu, Mater. High Temp. 35 (2018) 482–489.

    Article  Google Scholar 

  5. G. Kang, Q. Kan, J. Zhang, Y. Sun, Int. J. Plast. 22 (2006) 858–894.

    Article  Google Scholar 

  6. S.G. Hong, S.B. Lee, Int. J. Fatigue 26 (2004) 899–910.

    Article  Google Scholar 

  7. V.A. Strizhalo, A.I. Zinchenko, Strength Mater. 7 (1975) 420–424.

    Article  Google Scholar 

  8. G.S. Pisarenko, V.A. Strizhalo, V.I. Skripchenko, Strength Mater. 19 (1987) 300–306.

    Article  Google Scholar 

  9. G.S. Pisarenko, V.A. Strizhalo, V.I. Skripchenko, Strength Mater. 19 (1987) 307–312.

    Article  Google Scholar 

  10. W. Hu, C.H. Wang, S. Barter, Analysis of cyclic mean stress relaxation and strain ratchetting behaviour of aluminium 7050, DSTO-RR-0153, Aeronautical and Maritime Research Laboratory, Melbourne, Australia, 1999.

  11. C.H. Wang, L.R.F. Rose, Mech. Mater. 30 (1998) 229–241.

    Article  Google Scholar 

  12. S.M. Rahman, T. Hassan, in: ASME 2005 Pressure Vessels and Piping Conference, American Society of Mechanical Engineers, Denver, Colorado, USA, 2005, pp. 421–427.

  13. M. Firat, Mater. Des. 32 (2011) 3876–3882.

    Article  Google Scholar 

  14. M.E. Barkey, Calculation of notch strains under multiaxial nominal loading, University of Illinois at Urbana-Champaign, Illinois, USA, 1993.

    Google Scholar 

  15. C.H. Lee, V.N. Van Do, K.H. Chang, Int. J. Plast. 62 (2014) 17–33.

    Article  Google Scholar 

  16. K. Kolasangiani, K. Farhangdoost, M. Shariati, A. Varvani-Farahani, Int. J. Mech. Sci. 144 (2018) 24–32.

    Article  Google Scholar 

  17. A. Shekarian, A. Varvani-Farahani, Fatigue Fract. Eng. Mater. Struct. 42 (2019) 1402–1413.

    Article  Google Scholar 

  18. G.R. Ahmadzadeh, A. Varvani‐Farahani, Fatigue Fract. Eng. Mater. Struct. 36 (2013) 1232–1245.

    Article  Google Scholar 

  19. H. Neuber, J. Appl. Mech. 28 (1961) 544–550.

    Article  MathSciNet  Google Scholar 

  20. C. Liu, S. Shi, Y. Cai, X. Chen, Int. J. Press. Vessels Piping 169 (2019) 160–169.

    Article  Google Scholar 

  21. X. Chen, R. Jiao, K.S. Kim, Int. J. Plast. 21 (2005) 161–184.

    Article  Google Scholar 

  22. A. Varvani‐Farahani, Fatigue Fract. Eng. Mater. Struct. 40 (2017) 882–893.

    Article  Google Scholar 

  23. S.M. Hamidinejad, A. Varvani-Farahani, Mater. Des. 85 (2015) 367–376.

    Article  Google Scholar 

  24. G.R. Ahmadzadeh, A. Varvani-Farahani, Mech. Mater. 101 (2016) 40–49.

    Article  Google Scholar 

  25. G.R. Ahmadzadeh, S.M. Hamidinejad, A. Varvani-Farahani, J. Pressure Vessel Technol. 173 (2015) 031001.

    Article  Google Scholar 

  26. G.R. Ahmadzadeh, A. Varvani-Farahani, Mater. Des. 51 (2013) 231–241.

    Article  Google Scholar 

  27. P.J. Armstrong, C.O. Fredrick, A mathematical representation of the multiaxial Bauschinger effect, CEGB, Report RD/B/N731 Berkeley Nuclear Laboratories, Berkeley, Gloucestershire, UK, 1966.

    Google Scholar 

  28. M. Rezaiee-Pajand, S. Sinaie, Int. J. Solids Struct. 46 (2009) 3009–3017.

    Article  Google Scholar 

  29. W. Ramberg, W.R. Osgood, Description of stress-strain curves by three parameters, NACA Technical Note 902, NASA Scientific and Technical Information Facilities, Washington, USA, 1943.

    Google Scholar 

Download references

Acknowledgements

Authors wish to acknowledge the financial support by the Natural Sciences and Engineering Research Council (NSERC) of Canada.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Varvani-Farahani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shekarian, A., Varvani-Farahani, A. Ratcheting behavior of notched stainless steel samples subjected to asymmetric loading cycles. J. Iron Steel Res. Int. 28, 86–97 (2021). https://doi.org/10.1007/s42243-020-00465-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00465-2

Keywords

Navigation