Skip to main content
Log in

Effect of Temperature and Pressure on Conversion of Methane and Lifetime of the Catalyst in the Catalytic Decomposition of Methane

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The results of studying the effect of temperature and pressure on conversion of methane and the catalyst lifetime during the catalytic decomposition of methane with the formation of hydrogen and nanofibrous carbon on a Ni–Cu catalyst are presented. The pressure varied in the range of 1–10 atm at the temperatures of 600 and 675°C. It was found that when increasing pressure, the total yield of hydrogen increases from the start of synthesis to the deactivation of the catalyst. This effect is manifested the stronger, the higher the temperature of process. It is shown that increasing pressure allows expanding the temperature range of the process without reducing the total yield of useful products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.

Similar content being viewed by others

REFERENCES

  1. Pevnev, N.G. and Ponamarchuk, V.V., Vestn. Sib. Gos. Avtomobil’no-dorozhnogo Univ., 2017, vol. 55, no. 3, pp. 99–105.

    Google Scholar 

  2. Karim, G.A., Wierzba, I., and Al-Alousi, Y., Int. J. Hydrogen Energy, 1996, vol. 21, no. 7, pp. 625–621. https://doi.org/10.1016/0360-3199(95)00134-4

    Article  CAS  Google Scholar 

  3. Kuvshinov, G.G., Mogilnykh, Yu.I., Kuvshinov, D.G., Yermakov, D.Y., Yermakova, M.A., Salanov, A.N., and Rudina, N.A., Carbon, 1999, vol. 37, no. 8, pp. 1239–1246. https://doi.org/10.1016/S0008-6223(98)00320-0

    Article  CAS  Google Scholar 

  4. Ashik, U.P.M., Wan Daud, W.M.A., Abbas, H.F., Renew Sust. Energ. Rev., 2015, vol. 44, pp. 221–256. https://doi.org/10.1016/j.rser.2014.12.025

    Article  CAS  Google Scholar 

  5. Bannov, A.G., Uvarov, N.F., Shilovskaya, S.M., and Kuvshinov, G.G., Nanotechnologies in Russia, 2012, vol. 7, nos. 3–4, pp. 169–177. https://doi.org/10.1134/S1995078012020048

    Article  Google Scholar 

  6. Bannov, A.G., Uvarov, N.F., and Kuvshinov, G.G., The 8 Int. Forum on Strategic Technologies, IFOST 2013, vol. 1, pp. 194–199. https://doi.org/10.13140/2.1.1986.0481

    Article  Google Scholar 

  7. Krutskii, Y.L., Tyurin, A.G., Popov, M.V., Maksimovskii, E.A., and Netskina, O.V., Steel in Translation, 2018, vol. 48, no. 4, pp. 207–213. https://doi.org/10.3103/S096709121804006X

    Article  Google Scholar 

  8. Krutskii, Y.L., Popov, M.V., Cherkasova, N.Y., Kvashina, T.S., Chushenkov, V.I., Smirnov, A.I., Felof’yanova, A.V., Aparnev, A.I., Maksimovskii, E.A., and Netskina, O.V.., Russ. J. Appl. Chem., 2018, vol. 91, no. 3, pp. 428–435. https://doi.org/10.1134/S107042721803014X

    Article  CAS  Google Scholar 

  9. Qian, J.X., Chen, T.W., Enakonda, L.R., Liu, D.B., Mignani, G., Basset, J.-M., and Zhou, L., Int. J. Hydrogen Energ., 2020, vol. 45, no. 15, pp. 7981–8001. https://doi.org/10.1016/j.ijhydene.2020.01.052

    Article  CAS  Google Scholar 

  10. García-Sancho, C., Guil-López, R., Pascual, L., Maireles-Torres, P., Navarro, R.M., and Fierro, J.L.G., Appl. Catal. A: General, 2017, vol. 548, pp. 71–82. https://doi.org/10.1016/j.apcata.2017.07.038

    Article  CAS  Google Scholar 

  11. Li, J., Gong, Y., Chen, C., Hou, J., Yue, L., Fu, X., Zhao, L., Chen, H., Wang, H., and Peng, S., Fusion Eng. Des., 2017, vol. 125, pp. 593–602. https://doi.org/10.1016/j.fusengdes.2017.05.040

    Article  CAS  Google Scholar 

  12. Shen, Y. and Lua, A., Appl. Catal. B: Environmental, 2015, vol. 164, pp. 61–69. https://doi.org/10.1016/j.apcatb.2014.08.038

    Article  CAS  Google Scholar 

  13. Li, J., Xiao, C., Xiong, L., Chen, X., Zhao, L., Dong, L., Du, Y., Yang, Y., Wang, H., and Peng, S., RSC Adv., 2016, vol. 6, no. 57, pp. 52154–52163. https://doi.org/10.1039/c6ra05782a

    Article  CAS  Google Scholar 

  14. Mukhlenov, I.P., Dobkina, E.I., Deryuzhkina, V.I., and Soroko, V.E., Tekhnologiya katalizatorov (Catalysits Technology), Leningrad: Khimiya, 1979.

    Google Scholar 

  15. Lowell, S., Shields, J.E., Thomas, M.A., and Thommes, M., Characterization of Porous Solids and Powders: Surface Area, Pore Size and Density, Netherlands: Springer, 2006. https://doi.org/10.1007/978-1-4020-2303-3

    Google Scholar 

  16. Karnaukhov, A.P., Adsorbtsiya. Tekstura dispersnykh i poristykh materialov (Texture of Dispersed and Porous Materials), Novosibirsk: Izd. SO RAN, 1999.

    Google Scholar 

  17. Ermakova, M.A., Ermakov, D.Yu., Chuvilin, A.L., Kuvshinov, G.G., J. Catal., 2001, vol. 201, no. 2, pp. 183–197. https://doi.org/10.1006/jcat.2001.3243

    Article  CAS  Google Scholar 

  18. Chesnokov, V.V. and Buyanov, R.A., Russ. Chem. Rev., 2000, vol. 69, no. 7, pp. 623–638. https://doi.org/10.1070/RC2000v069n07ABEH000540

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. V. Popov.

Ethics declarations

The authors declare no conflict of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Popov, M.V., Bannov, A.G., Brester, A.E. et al. Effect of Temperature and Pressure on Conversion of Methane and Lifetime of the Catalyst in the Catalytic Decomposition of Methane. Russ J Appl Chem 93, 954–959 (2020). https://doi.org/10.1134/S1070427220070022

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220070022

Keywords:

Navigation