Skip to main content
Log in

Features of Methyl Linoleate Oxidation in Triton X-100 Micellar Buffer Solutions

  • Physicochemical Studies of Systems and Processes
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The kinetics of oxygen absorption during the oxidation of methyl linoleate in Triton X-100 micelles has been studied. The order of the reaction with respect to the initiator diminishes from 1 to 0.6 with an increase in the total content of Triton X-100 per the unit volume of solution, since by the time of reaching the maximum oxygen absorption rate, the system consists of mixed micelles, which intercept the radicals generated by the initiator. The results of the analysis can be used to assess the dynamics of solubilization of hydrophobic substrates for creating a technique to test the antioxidant activity of biologically important compounds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Scheme 1.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Men’shchikova, E.B., Lankin, V.Z., Zenkov, N.K., Bondar’, I.A., Krutovykh, N.F., and Trufakin, V.A., Okislitel’nyi stress. Prooksidanty i antioksidanty (Oxidation of Nonionic Surfactants with Molecular Oxygen), Moscow: Slovo, 2006.

    Google Scholar 

  2. Frankel, E.N., Lipid Oxidation, Glasgow: The Oily Press, 2005.

    Book  Google Scholar 

  3. Niki, E., Encyclopedia of Radicals in Chemistry, Biology and Materials, Chichester, West Sussex: John Wiley & Sons, 2012. https://doi.org/10.1002/9781119953678.rad052

    Google Scholar 

  4. Avendano, C. and Menendez, J.C., Medicinal chemistry of anticancer drugs, Amsterdam: Elsevier, 2015

    Google Scholar 

  5. Denisov, E.T. and Afanas’ev, I.F., Oxidation and Antioxidants in Organic Chemistry and Biology, Boca Raton, FL.: CRC Press Taylor & Francis Group, 2005.

    Book  Google Scholar 

  6. Roginskii, V.A., Kinetika Kataliz, 1996, vol. 37, no. 4, pp. 521–527.

    Google Scholar 

  7. Roginsky, V., Archives Biochem. Biophys., 2003, vol. 414, no. 2, pp. 261–270. https://doi.org/10.1016/s0003-9861(03)00143-7

    Article  CAS  Google Scholar 

  8. Roginsky, V.A., Tashlitsky, V.N., and Skulachev, V.P., Aging, 2009, vol. 1, no. 5, pp. 481–489. https://doi.org/10.1016/s0003-9861(03)00143-7

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Pliss, E.M., Loshadkin, D.V., Grobov, A.M., Kuznetsova, T.S., and Rusakov, A.I., Russ. J. Phys. Chem. B, 2015, vol. 9, no. 1, pp. 127–131. https://doi.org/10.1134/S1990793115010091

    Article  CAS  Google Scholar 

  10. Barclay, L.R.C., Baskin, S.J., Locke, S.J. and Schaefer, T.D., Canad. J. Chem., 1987, vol. 65, no. 11, pp. 2529–2541. https://doi.org/10.1139/v87-422

    Article  CAS  Google Scholar 

  11. Castle, L. and Perkins, M.J., J. Am. Chem. Soc., 1986, vol.108, pp. 6381–6382. https://doi.org/10.1021/ja00280a041

    Article  CAS  Google Scholar 

  12. Paradies, H., J. Phys. Chem., 1980, vol. 84, no. 6, pp. 599–607. https://doi.org/10.1021/j100443a008

    Article  CAS  Google Scholar 

  13. Jaiswal, S., Mondal, R., Paul, D., and Mukherjee, S., Chem. Phys. Lett., 2016, vol. 646, pp. 18–24. https://doi.org/10.1016/j.cplett.2015.12.051

    Article  CAS  Google Scholar 

  14. Uttam, A., Chandrima, J., and Saptarshi, M., J. Colloid Interface Sci., 2011, vol. 364, no. 2, pp. 400–406. https://doi.org/10.1016/j.jcis.2011.08.047

    Article  CAS  Google Scholar 

  15. Racz, G., Csay, T., Takacs, E., and Wojnarovits, L., J. Radioanal Nucl. Chem., 2017, vol. 314, no. 2, pp. 1189–1196. https://doi.org/10.1007/s10967-017-5490-9

    Article  CAS  Google Scholar 

  16. Streletzky, K. and Phillies, G., Langmuir, 1995, vol. 11, no. 1, pp. 42–47. https://doi.org/10.1021/la00001a011

    Article  CAS  Google Scholar 

  17. Tiller, G., Mueller, T., Docker, M., and Sturve, W., Anal Biochem., 1984, vol. 141, no. 1, pp. 262–266. https://doi.org/10.1016/0003-2697(84)90455-X

    Article  CAS  PubMed  Google Scholar 

  18. Valdes-Dıaz, G., Rodrıgez-Calvo, S., Perez-Gramatges, A., Rapado-Paneque, M., Fernandez-Lima, F.A., Ponciano, C.R., and da Silveira, E.F., J. Colloid Interface Sci., 2007, vol. 311, no. 1, pp. 253–261. https://doi.org/10.1016/j.jcis.2007.02.081

    Article  CAS  PubMed  Google Scholar 

  19. Kasaikina, O.T., Mengele, E.A., Plashchina, I.G., Colloid, J., 2016, vol. 78, no. 6, pp. 767–771. https://doi.org/10.1134/S1061933X1606006

    Article  CAS  Google Scholar 

  20. Nechaev, A.P., Nikolaeva Yu.V., Pilipenko, O.V., Dubrovin, G.A., and Samoilov, A.V., Pishch. prom-st’, 2018, no. 3, pp. 11–14.

  21. Samoilov, A.V., Masla Zhiry, 2016, nos. 3–4, pp. 20–21.

  22. Trineeva, O.V., Razrabotka i registratsiya lekarstvennykh sredstv (Development and Registration of Drugs), 2017, no. 4, pp. 180–197.

  23. Perevozkina, M.G., Testirovanie antioksidantnoi aktivnosti polifunktsional’nykh soedinenii kineticheskimi metodami (Testing the Antioxidant Activity of Polyfunctional Compounds by Kinetic Methods), Novosibirsk, 2014.

  24. Grebenyuk A. Yu., Kirpichnikov, M.P., Matich L. Yu., Popov, V.O., Ravvin, N.V., Skryabin, K.G., Sokolov, A.V., and Chulok, A.A., Prognoz nauchno-tekhnologicheskogo razvitiya Rossii: 2030. Biotekhnologii (Forecast of Scientific and Technological Development of Russia: 2030. Biotechnology), Gokhberga, L.M. and Kirpichnikova, M.P., Eds., Moscow: Ministerstvo obrazovaniya i nauki Rossiiskoi Federatsii, Natsional’nyi issledovatel’skii universitet “Vysshaya shkola ekonomiki,” 2014.

  25. Roginskii, V.A. and Utkin, I.V., Kinetika Kataliz, 1991, vol. 32, no. 4, pp. 814–819.

    CAS  Google Scholar 

  26. Frei, B., Stocker, R., and Ames, B., Proc. Natl. Acad. Sci. USA, 1988, vol. 85, no. 24, pp. 9748–9752. https://doi.org/10.1073/pnas.85.24.9748

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This work was carried out with the financial support of the Russian Science Foundation grant no. 20-13-00148.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. M. Pliss.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loshadkin, D.V., Pliss, E.M. & Kasaikina, O.T. Features of Methyl Linoleate Oxidation in Triton X-100 Micellar Buffer Solutions. Russ J Appl Chem 93, 1090–1095 (2020). https://doi.org/10.1134/S1070427220070216

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220070216

Keywords:

Navigation