Skip to main content
Log in

Production of Aromatic Hydrocarbons from Syngas: Principles, Problems, and Prospects

  • Reviews
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

The review deals with the development of catalysts for the production of aromatic hydrocarbons from syngas. The thermodynamic aspects of the syngas conversion to aromatic hydrocarbons and the influence of the properties of the catalytic system on the yield and composition of the reaction products are considered. The mechanisms of the reaction on different catalysts are presented, and the influence of the catalyst active phase and structural features of the support on the activity, stability, and selectivity of the catalysts are discussed. The composition of the catalyst active phase influences the structure of the reaction intermediates and the choice of the process temperature and feed supply rate. The major factors influencing the selectivity of the formation of aromatic compounds are the support pore structure and acidity. The highest yield of aromatic compounds can be reached at maximum close location of various types of catalyst active sites: metal phase and acid sites of the support.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.
Fig. 14.
Fig. 15.
Fig. 16.

Similar content being viewed by others

Notes

  1. Publication permission of June 11, 2020.

  2. Publication permission of June 11, 2020.

  3. Publication permission of June 11, 2020.

  4. Publication permission of June 11, 2020.

  5. Publication permission of June 11, 2020.

  6. Publication permission of June 11, 2020.

  7. Publication permission of June 11, 2020.

REFERENCES

  1. Xu, Y., Liu, D., and Liu, X., Appl. Catal. A: General, 2018, vol. 552, pp. 168–183. https://doi.org/10.1016/ыj.apcata.2018.01.012

    Article  CAS  Google Scholar 

  2. Settle, A.E., Berstis, L., Rorrer, N.A., Roman-Leshkóv, Y., Beckham, G.T., Richards, R.M., and Vardon, D.R., Green Chem., 2017, vol. 19, no. 15, pp. 3468–3492. https://doi.org/10.1039/C7GC00992E

    Article  CAS  Google Scholar 

  3. Brosius, R. and Claeys, M., Chem., 2017, vol. 3, no. 2, pp. 202–204. https://doi.org/10.1016/j.chempr.2017.07.005

    Article  CAS  Google Scholar 

  4. Cheng, K., Zhou, W., Kang, J., He, S., Shi, S., Zhang, Q., Pan, Y., Wen, W., and Wang, Y., Chem., 2017, vol. 3, no. 2, pp. 334–347. https://doi.org/10.1016/j.chempr.2017.05.007

    Article  CAS  Google Scholar 

  5. Wang, L., Tao, L., Xie, M., Xu, G., Huang, J., and Xu, Y., Catal. Lett., 1993, vol. 21, nos. 1–2, pp. 35–41. https://doi.org/10.1007/BF00767368

    Article  CAS  Google Scholar 

  6. Tan, P., Catal. Commun., 2018, vol. 103, pp. 101–104. https://doi.org/10.1016/j.catcom.2017.10.008

    Article  CAS  Google Scholar 

  7. Karakaya, C. and Kee, R.J., Prog. Energy Combust. Sci., 2016, vol. 55, pp. 60–97. https://doi.org/10.1016/j.pecs.2016.04.003

    Article  Google Scholar 

  8. Cheng, K., Kang, J., King, D.L., Subramanian, V., Zhou, C., Zhang, Q., and Wang, Y., Adv. Catal., 2017, vol. 60, pp. 125–208. https://doi.org/10.1016/BS.ACAT.2017.09.003

    Article  CAS  Google Scholar 

  9. Saravanan, K., Ham, H., Tsubaki, N., and Bae, J.W., Appl. Catal. B: Environmental, 2017, vol. 217, pp. 494–522. https://doi.org/10.1016/J.APCATB.2017.05.085

    Article  CAS  Google Scholar 

  10. Subramanian, V., Cheng, K., and Wang, Y., Encyclopedia of Interfacial Chemistry, Amsterdam: Elsevier, 2018. https://doi.org/10.1016/B978-0-12-409547-2.13530-9

    Book  Google Scholar 

  11. Abelló, S. and Montané, D., Chem. Sus. Chem., 2011, vol. 4, no. 11, pp. 1538–1556. https://doi.org/10.1002/cssc.201100189

    Article  CAS  Google Scholar 

  12. Koo, H.M., Tran-Phu, T., Yi, G.-R., Shin, C.-H., Chung, C.-H., and Bae, J.-W., Catal. Sci. Technol., 2016, vol. 6, no. 12, pp. 4221–4231. https://doi.org/10.1039/C5CY01685A

    Article  CAS  Google Scholar 

  13. Park, K.S., Saravanan, K., Park, S.-J., Lee, Y.-J., Jeon, K.-W., and Bae, J.W., Catal. Sci. Technol., 2017, vol. 7, no. 18, pp. 4079–4091. https://doi.org/10.1039/C7CY01065F

    Article  CAS  Google Scholar 

  14. Wei, J., Ge, Q., Yao, R., Wen, Z., Fang, C., Guo, L., Xu, H., and Sun, J., Nat. Commun., 2017, vol. 8, no. 1, p. 15174. https://doi.org/10.1038/ncomms15174

    Article  PubMed  PubMed Central  Google Scholar 

  15. Kasipandi, S. and Bae, J.W., Adv. Mater., 2019, vol. 31, no. 34, pp. 1–18. https://doi.org/10.1002/adma.201803390

    Article  CAS  Google Scholar 

  16. Yan, Q., Lu, Y., Wan, C., Han, J., Rodriguez, J., Yin, J., and Yu, F., Energy Fuels, 2014, vol. 28, no. 3, pp. 2027–2034. https://doi.org/10.1021/ef402507u

    Article  CAS  Google Scholar 

  17. Varma, R.L., Bakhshi, N.N., Mathews, J.F., and Ng, S.H., Can. J. Chem. Eng., 1985, vol. 63, no. 4, pp. 612–617. https://doi.org/10.1002/cjce.5450630413

    Article  CAS  Google Scholar 

  18. Arandes, J.M., Ereña, J., Gayubo, A.G., Bilbao, J., and Lasa, H.I., Chem. Eng. Commun., 1999, vol. 174, no. 1, pp. 1–19. https://doi.org/10.1080/00986449908912787

    Article  CAS  Google Scholar 

  19. Botes, F.G., Appl. Catal. A: General, 2005, vol. 284, nos. 1–2, pp. 21–29. https://doi.org/10.1016/j.apcata.2005.01.012

    Article  CAS  Google Scholar 

  20. Ereña, J., Arandes, J.M., Bilbao, J., Aguayo, A.T., and de Lasa, H.I., Ind. Eng. Chem. Res., 1998, vol. 37, no. 4, pp. 1211–1219. https://doi.org/10.1021/ie970568p

    Article  Google Scholar 

  21. Zhang, P., Tan, L., Yang, G., and Tsubaki, N., Chem. Sci., 2017, vol. 8, no. 12, pp. 7941–7946. https://doi.org/10.1039/C7SC03427J

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Xu, Y., Liu, J., Ma, G., Wang, J., Wang, Q., Lin, J., Wang, H., Zhang, C., and Ding, M., Mol. Catal., 2018, vol. 454, March, pp. 104–113. https://doi.org/10.1016/j.mcat.2018.05.019

    Article  CAS  Google Scholar 

  23. Lebarbier, V.M., Dagle, R.A., Kovarik, L., Lizarazo-Adarme, J.A., King, D.L., and Palo, D.R., Catal. Sci. Technol., 2012, vol. 2, no. 10, pp. 2116–2127. https://doi.org/10.1039/c2cy20315d

    Article  CAS  Google Scholar 

  24. Udaya, V., Rao, S., and Gormley, R.J., Catal. Today, 1990, vol. 6, no. 3, pp. 207–234. https://doi.org/10.1016/0920-5861(90)85003-7

    Article  CAS  Google Scholar 

  25. Yang, J., Pan, X., Jiao, F., Li, J., and Bao, X., Chem. Commun., 2017, vol. 53, no. 81, pp. 11146–11149. https://doi.org/10.1039/C7CC04768A

    Article  CAS  Google Scholar 

  26. Karre, A.V., Kababji, A., Kugler, E.L., and Dadyburjor, D.B., Catal. Today, 2013, vol. 214, pp. 82–89. https://doi.org/10.1016/j.cattod.2013.04.010

    Article  CAS  Google Scholar 

  27. Karre, A.V., Kababji, A., Kugler, E.L., and Dadyburjor, D.B., Catal. Today, 2012, vol. 198, no. 1, pp. 280–288. https://doi.org/10.1016/j.cattod.2012.04.068

    Article  CAS  Google Scholar 

  28. Nakhaei Pour, A. and Housaindokht, M.R., J. Nat. Gas Sci. Eng., 2013, vol. 14, pp. 29–33. https://doi.org/10.1016/j.jngse.2013.04.004

    Article  CAS  Google Scholar 

  29. Chang, C., J. Catal., 1979, vol. 56, no. 2, pp. 268–273. https://doi.org/10.1016/0021-9517(79)90113-1

    Article  CAS  Google Scholar 

  30. Caesar, P., J. Catal., 1979, vol. 56, no. 2, pp. 274–278. https://doi.org/10.1016/0021-9517(79)90114-3

    Article  CAS  Google Scholar 

  31. Pour, A.N., Zamani, Y., Tavasoli, A., Kamali Shahri, S.M., and Taheri, S.A., Fuel, 2008, vol. 87, nos. 10–11, pp. 2004–2012. https://doi.org/10.1016/j.fuel.2007.10.014

    Article  CAS  Google Scholar 

  32. Wang, T., Xu, Y., Shi, C., Jiang, F., Liu, B., and Liu, X., Catal. Sci. Technol., 2019, vol. 9, no. 15, pp. 3933–3946. https://doi.org/10.1039/c9cy00750d

    Article  CAS  Google Scholar 

  33. Xu, C., Guo, Y., Xiao, Q., Zhong, Y., and Zhu, W., J. Porous Mater., 2012, vol. 19, no. 5, pp. 847–852. https://doi.org/10.1007/s10934-011-9539-9

    Article  CAS  Google Scholar 

  34. Chang, C.D., Lang, W.H., and Silvestri, A.J., J. Catal., 1979, vol. 56, no. 2, pp. 268–273. https://doi.org/10.1016/0021-9517(79)90113-1

    Article  CAS  Google Scholar 

  35. Plana-Pallejà, J., Abelló, S., Berrueco, C., and Montané, D., Appl. Catal. A: General, 2016, vol. 515, pp. 126–135. https://doi.org/10.1016/j.apcata.2016.02.004

    Article  CAS  Google Scholar 

  36. Xu, Y., Liu, J., Ma, G., Wang, J., Lin, J., Wang, H., Zhang, C., and Ding, M., Fuel, 2018, vol. 228, pp. 1–9. https://doi.org/10.1016/j.fuel.2018.04.151

    Article  CAS  Google Scholar 

  37. Yang, T., Cheng, L., Li, N., and Liu, D., Ind. Eng. Chem. Res., 2017, vol. 56, no. 41, pp. 11763–11772. https://doi.org/10.1021/acs.iecr.7b03450

    Article  CAS  Google Scholar 

  38. Guan, N., Liu, Y., and Zhang, M., Catal. Today, 1996, vol. 30, nos. 1–3, pp. 207–213. https://doi.org/10.1016/0920-5861(96)00014-4

    Article  CAS  Google Scholar 

  39. Martínez, A. and López, C., Appl. Catal. A: General, 2005, vol. 294, no. 2, pp. 251–259. https://doi.org/10.1016/j.apcata.2005.07.038

    Article  CAS  Google Scholar 

  40. Zhao, B., Zhai, P., Wang, P., Li, J., Li, T., Peng, M., Zhao, M., Hu, G., Yang, Y., Li, Y.-W., Zhang, Q., Fan, W., and Ma, D., Chem., 2017, vol. 3, no. 2, pp. 323–333. https://doi.org/10.1016/j.chempr.2017.06.017

    Article  CAS  Google Scholar 

  41. Dagle, R.A., Lizarazo-Adarme, J.A., Lebarbier Dagle, V., Gray, M.J., White, J.F., King, D.L., and Palo, D.R., Fuel Process. Technol., 2014, vol. 123, pp. 65–74. https://doi.org/10.1016/j.fuproc.2014.01.041

    Article  CAS  Google Scholar 

  42. Baerns, M., Guan, N., Körting, E., Lindner, U., Lohrengel, M., and Papp, H., Int. J. Energy Res., 1994, vol. 18, no. 2, pp. 197–204. https://doi.org/10.1002/er.4440180217

    Article  CAS  Google Scholar 

  43. Botes, F., and Böhringer, W., Appl. Catal. A: General, 2004, vol. 267, nos. 1–2, pp. 217–https://doi.org/10.1016/j.apcata.2004.03.006

    Article  CAS  Google Scholar 

  44. Sai Prasad, P.S., Bae, J.W., Jun, K.-W., and Lee, K.-W., Catal. Surveys Asia, 2008, vol. 12, no. 3, pp. 170–183. https://doi.org/10.1007/s10563-008-9049-1

    Article  CAS  Google Scholar 

  45. Kang, S.-H., Bae, J.W., Cheon, J.-Y., Lee, Y.-J., Ha, K.-S., Jun, K.-W., Lee, D.-H., and Kim, B.-W., Appl. Catal. B: Environmental, 2011, vol. 103, nos. 1–2, pp. 169–180. https://doi.org/10.1016/j.apcatb.2011.01.024

    Article  CAS  Google Scholar 

  46. Lapidus, A.L. and Krylova, A.Y., Russ. Chem. Rev., 1998, vol. 67, no. 11, pp. 941–950. https://doi.org/10.1070/RC1998v067n11ABEH000416

    Article  Google Scholar 

  47. Weber, J.L., Dugulan, I., de Jongh, P.E., and de Jong, K.P., ChemCatChem, 2018, vol. 10, no. 5, pp. 1107–1112. https://doi.org/10.1002/cctc.201701667

    Article  CAS  Google Scholar 

  48. Patent US 4298695A, Publ. 1980.

  49. Zhang, J., Abbas, M., and Chen, J., Catal. Sci. Technol., 2017, vol. 7, no. 16, pp. 3626–3636. https://doi.org/10.1039/C7CY01001J

    Article  Google Scholar 

  50. Schulz, H., Niederberger, H.L., Kneip, M., and Weil, F., Stud. Surf. Sci. Catal., 1991, vol. 61, pp. 313–323. https://doi.org/10.1016/S0167-2991(08)60096-8

    Article  CAS  Google Scholar 

  51. Yan, Q., Yu, F., Cai, Z., and Zhang, J., Biomass Bioenergy, 2012, vol. 47, pp. 469–473. https://doi.org/10.1016/j.biombioe.2012.09.001

    Article  CAS  Google Scholar 

  52. Rao, V.U.S., Gormley, R.J., Shamsi, A., Petrick, T.R., Stencel, J.M., Schehl, R.R., Chi, R.D.H., and Obermyer, R.T., J. Mol. Catal., 1985, vol. 29, no. 2, pp. 271–283. https://doi.org/10.1016/0304-5102(85)87010-3

    Article  CAS  Google Scholar 

  53. Varma, R.L., Jothimurugesan, K., Bakhshi, N.N., Mathews, J.F., and Ng, S.H., Can. J. Chem. Eng., 1986, vol. 64, no. 1, pp. 141–148. https://doi.org/10.1002/cjce.545064012

    Article  CAS  Google Scholar 

  54. Bruce, L.A., Hope, G.J., and Mathew, J.F., Appl. Catal., 1984, vol. 9, no. 3, pp. 351–359. https://doi.org/10.1016/0166-9834(84)80006-8

    Article  CAS  Google Scholar 

  55. Saima, H., Fujimoto, K., and Tominaga, H., Chem. Lett., 1984, vol. 13, no. 10, pp. 1777–1780. https://doi.org/10.1246/cl.1984.1777

    Article  Google Scholar 

  56. Fujimoto, K., J. Catal., 1984, vol. 87, no. 1, pp. 136–143. https://doi.org/10.1016/0021-9517(84)90176-3

    Article  CAS  Google Scholar 

  57. Saima, H., Fujimoto, K., and Tominaga, H., Bull. Chem. Soc. Jpn., 1985, vol. 58, no. 3, pp. 795–802. https://doi.org/10.1246/bcsj.58.795

    Article  CAS  Google Scholar 

  58. Wijayapala, R., Yu, F., Pittman, C.U., and Mlsna, T.E., Appl. Catal. A: General, 2014, vol. 480, pp. 93–99. https://doi.org/10.1016/j.apcata.2014.04.044

    Article  CAS  Google Scholar 

  59. Zhang, Q., Tan, Y., Yang, C., Xie, H., and Han, Y., J. Ind. Eng. Chem., 2013, vol. 19, no. 3, pp. 975–980. https://doi.org/10.1016/j.jiec.2012.11.019

    Article  CAS  Google Scholar 

  60. Simard, F., Mahay, A., Jean, G., and Delasa, H., Can. J. Chem. Eng., 1991, vol. 69, no. 4, pp. 898–906. https://doi.org/10.1002/cjce.5450690412

    Article  CAS  Google Scholar 

  61. Simard, F., Sedran, U.A., Sepúlveda, J., Fígoli, N.S., and de Lasa, H.I., Appl. Catal. A: General, 1995, vol. 125, no. 1, pp. 81–98. https://doi.org/10.1016/0926-860X(94)00275-4

    Article  CAS  Google Scholar 

  62. Huang, Z., Wang, S., Qin, F., Huang, L., Yue, Y., Hua, W., Qiao, M., He, H., Shen, W., and Xu, H., Chem. Cat. Chem., 2018, vol. 10, no. 20, pp. 4519–4524. https://doi.org/10.1002/cctc.201800911

    Article  CAS  Google Scholar 

  63. Zhou, W., Shi, S., Wang, Y., Zhang, L., Wang, Y., Zhang, G., Min, X., Cheng, K., Zhang, Q., Kang, J., and Wang, Y., Chem. Cat. Chem., 2019, vol. 11, no. 6, pp. 1681–1688. https://doi.org/10.1002/cctc.201801937

    Article  CAS  Google Scholar 

  64. Fu, Y., Ni, Y., Zhu, W., and Liu, Z., J. Catal., 2020, vol. 383, pp. 97–102. https://doi.org/10.1016/j.jcat.2019.12.044

    Article  CAS  Google Scholar 

  65. Xiao, K., Bao, Z., Qi, X., Wang, X., Zhong, L., Fang, K., Lin, M., and Sun, Y., Cuihua Xuebao/Chin. J. Catal., 2013, vol. 34, no. 1, pp. 116–129. https://doi.org/10.1016/s1872-2067(11)60496-8

    Article  CAS  Google Scholar 

  66. Song, W., Hou, Y., Chen, Z., Cai, D., and Qian, W., Chem. Eng. Sci., 2020, vol. 212, p. 115328. https://doi.org/10.1016/j.ces.2019.115328

    Article  CAS  Google Scholar 

  67. Patenmt WO 2019/095405, Publ. 2019.

  68. Patent CN 107285972A, Publ. 2017.

  69. Patent CN 109701602A, Publ. 2017.

  70. Varma, R.L., Bakhshi, N.N., Mathews, J.F., and Ng, S.H., Ind. Eng. Chem. Res., 1987, vol. 26, no. 2, pp. 183–188. https://doi.org/10.1021/ie00062a001

    Article  CAS  Google Scholar 

  71. Patent CN 109701603A, Publ. 2017.

  72. Patent CN 109701620A, Publ. 2017.

  73. Patent WO 2017210954A1, Publ. 2016.

  74. Liu, B. and Ji, S., J. Energy Chem., 2013, vol. 22, no. 5, pp. 740–746. https://doi.org/10.1016/S2095-4956(13)60098-4

    Article  Google Scholar 

  75. Liu, J., Shen, W., Cui, D., Yu, J., Su, F., and Xu, G., Catal. Commun., 2013, vol. 38, pp. 35–39. https://doi.org/10.1016/j.catcom.2013.04.01

    Article  CAS  Google Scholar 

Download references

Funding

The study was financially supported by the Ministry of Science and Higher Education of the Russian Federation (unique project identifier RFMEFI60719X0296).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to L. A. Kulikov.

Ethics declarations

Anton L’vovich Maksimov is the Editor-in-Chief of Zhurnal Prikladnoi Khimii (Russian Journal of Applied Chemistry). The other authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makeeva, D.A., Kulikov, L.A., Afokin, M.I. et al. Production of Aromatic Hydrocarbons from Syngas: Principles, Problems, and Prospects. Russ J Appl Chem 93, 933–953 (2020). https://doi.org/10.1134/S1070427220070010

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220070010

Keywords:

Navigation