Skip to main content
Log in

Desulfurization of Gasoline Fuel via Photocatalytic Oxidation/Adsorption Using NaX Zeolite-Based under Mild Conditions: Process Optimization by Central Composite Design

  • Catalysis
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

In this study, Ni/TiO2/NaX zeolite nanoparticles were synthesized by hydrothermal and wet inoculation methods and characterized by XRD, FTIR, SEM, EDXA, TEM, and BET/BJH techniques. Desulfurization of gasoline under visible light was investigated in a batch reactor under mild conditions. Response surface methodology with central composite design was used to investigate mass of Ni/TiO2/NaX zeolite nanoparticles as a photocatalyst and mass of NaX zeolite as adsorbent effects on conversion and process optimization. According to the experiments, the optimum conditions for the desulfurization of gasoline was determined with conversion percent of 92.29% with Ni/TiO2/NaX zeolite nanoparticles (0.68) and NaX zeolite adsorbent (0.84 g). In addition, the results showed that NaX zeolite adsorbent in the adsorption process has a high effect on gasoline desulfurization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Song, C. and Ma, X., Appl. Catal., B, 2003, vol. 41, pp. 207–238. https://doi.org/10.1016/S0926-3373(02)00212-6

    Article  CAS  Google Scholar 

  2. Kim, J.H., Ma, X., Zhou, A., and Song, C., Catal. Today, 2006, vol. 111, pp. 74–83. https://doi.org/10.1016/j.cattod.2005.10.017

    Article  CAS  Google Scholar 

  3. Dehghan, R. and Anbia, M., Fuel Process. Technol., 2017, vol. 167, pp. 99–116.

    Article  CAS  Google Scholar 

  4. Song, C., Catal. Today., 2006, vol. 86, pp. 211–263. https://doi.org/10.1016/S0920-5861(03)00412-7

    Article  CAS  Google Scholar 

  5. Wang, Y., Latz, J., Dahl, R., Pasel, J., and Peters, R., Fuel Process. Technol., 2009, vol. 90, pp. 458–464.

    Article  CAS  Google Scholar 

  6. Wang, Y., Geder, J., Schubert, J.M., Dahl, R., Pasel, J., and Peters, R., Fuel Process. Technol., 2012, vol. 95, pp. 144–150.

    Article  CAS  Google Scholar 

  7. Chica, A., Corma, A., and Domine, M., J. Catal., vol. 242, pp. 299–308. https://doi.org/10.1002/chem.200500858

    Article  CAS  Google Scholar 

  8. Timko, M.T., Schmois, E., Patwardhan, P., Kida, Y., Class, C.A., and Green, W.H., Energy Fuels, 2014, vol. 28, pp. 2977–2983.

    Article  CAS  Google Scholar 

  9. Wu, X., Bai, Y., Tian, Y., Meng, X., and Shi, L. Korean Chem. Soc., 2013, vol. 34, pp. 3055–3058.

    Article  CAS  Google Scholar 

  10. Zheng, X.D., Dong, H.J., Wang, X., and Shi, L., Catal. Lett., 2009, vol. 127, pp. 70–74. https://doi.org/10.1007/s10562-008-9625-z

    Article  CAS  Google Scholar 

  11. Jiang, X., Nie, Y., Li, C., and Wang, Z., Fuel, 2008, vol. 87, pp. 79–84. https://doi.org/10.1016/j.fuel.2007.03.045

    Article  CAS  Google Scholar 

  12. Li, F., Kou, C., Sun, Z., Hao, Y., Liu, R., and Zhao, D., J. Hazard. Mater., 2012, vols. 205–206, pp. 164–170.

    Article  Google Scholar 

  13. Zhang, S., Zhang, Q., and Zhang, Z.C., Ind. Eng. Chem. Res., 2004, vol. 43, pp. 614–622. https://doi.org/10.1021/ie030561%2B

    Article  CAS  Google Scholar 

  14. Martin, A.B., Alcon, A., Santos, V.E., and Garcia-Ochoa, F., Energy Fuels, 2005, vol. 19, pp. 775–782.

    Article  CAS  Google Scholar 

  15. Davoodi- Dehaghani, F., Vosoughi, M., and Ziaee, A.A., Bioresour. Technol., 2010, vol. 101, pp. 1102–1105.

    Article  CAS  Google Scholar 

  16. Wang, J., Xu, F., Xie, W.J., Mei, Z.J., Zhang, Q.Z., and Cai, J., J. Hazard. Mater., 2009, vol. 163, pp. 538–540.

    Article  CAS  Google Scholar 

  17. Meng, C., Fang, Y., Jin, L., and Hu, H., Catal. Today, 2010, vol. 149, pp. 138–142. https://doi.org/10.1016/j.cattod.2009.02.038

    Article  CAS  Google Scholar 

  18. Samadi-Maybodi, A., Teymouri, M., Vahid, A., and Miranbeigi, A., J. Hazard. Mater., 2011, vol. 192, pp. 1667–1674.

    Article  CAS  Google Scholar 

  19. Wang, Y. and Yang, R.T., Langmuir, 2007, vol. 23, pp. 3825–3831.

    Article  CAS  Google Scholar 

  20. Timko, M.T., Wang, J.A., Burgess, J., Kracke, P., Gonzalez, L., and Jaye, C., Fuel, 2016, vol. 163, pp. 223–23.

    Article  CAS  Google Scholar 

  21. Yang, Y., Lu, H., Ying, P., Jiang, Z., and Li, C., Carbon, 2007, vol. 45, pp. 3042–3044. https://doi.org/10.1016/j.carbon.2007.10.016

    Article  CAS  Google Scholar 

  22. Huang, L., Qin, Z., Wang, G., Du, M., Ge, H., and Li, X., Ind. Eng. Chem. Res., 2010, vol. 49, pp. 4670–4675.

    Article  CAS  Google Scholar 

  23. Watanabe, S., Ma, X., Song, C. ACS Div. Fuel Chem. Prep., 2004, vol. 49, pp. 511–513.

    CAS  Google Scholar 

  24. Xue, M., Chitrakar, R., Sakane, K., Hirotsu, T., Ooi, K., Yoshimura, Y., J. Colloid Interface Sci., 2005, vol. 285, pp. 487–492.

    Article  CAS  Google Scholar 

  25. Li, W., Tang, H., Zhang, T., Li, Q., Xing, J., Liu, H., AIChE J., 2009, p. 56. https://doi.org/10.1002/aic.12070

    Article  CAS  Google Scholar 

  26. Wang, Y., Yang, R.T., Heinzel, J.M., Chem. Eng. Sci., 2008, vol. 63, pp. 356–365. https://doi.org/10.1016/j.ces.2007.09.002

    Article  CAS  Google Scholar 

  27. Liu, B.S., Xu, D.F., Chu, J.X., Liu, W., Au, C.T., Energy Fuels, 2007, vol. 21, pp. 250–255.

    Article  CAS  Google Scholar 

  28. McKinley, S.G. and Angelici, R.J., Chem. Commun. (Camb.), 2003, pp. 2620–2621.

    Article  Google Scholar 

  29. Palomino, J.M., Tran, D.T., Kareh, A.R., Miller, C.A., Gardner, J.M.V., and Dong, H., J. Power Sour., 2015, vol. 278, pp. 141–148.

    Article  CAS  Google Scholar 

  30. Wang, H., Song, L., Jiang, H., Xu, J., Jin, L., and Zhang, X., Fuel Process. Technol., 2009, vol. 90, pp. 835–838.

    Article  CAS  Google Scholar 

  31. Velu, S., Song, C., Engelhard, M.H., and Chin, Y.H., Ind. Eng. Chem. Res., vol. 44, pp. 5740–5749.

    Article  Google Scholar 

  32. Zhang, X., Tong, D., Zhao, J., Li, X.Y., Mater. Lett., vol. 104, pp. 80–83.

    Article  Google Scholar 

  33. Kosanovic, C., Havancsák, K., Subotic, B., Svetlicic, V., Radic, T.M., Cziráki, A., Huhn, G., Buljan, I., and Smrecki, V., Micropor. Mesopor. Mater., 2011, vol. 142, pp. 139–146.

    Article  CAS  Google Scholar 

  34. Zhang, Z., Xu, Y., Ma, X., Li, F., Liu, D., Chen, Z., Zhang, F., and Dionysiou, D.D, J. Hazard. Mater., 2012, vol. 209, pp. 271–277.

    Article  Google Scholar 

  35. Chow, K.L., Man, Y.B., Zheng, J.S., Liang, Y., Tam, N.F., and Wong, M.H., J. Environ. Sci., 2012, vol. 24, no. 9, pp. 1670–1678. https://doi.org/10.1016/S1001-0742(11)60992-3

    Article  CAS  Google Scholar 

  36. Hu, S., Li, F., Fan, Z., and Chang, C.C., Appl. Surf. Sci., 2011, vol. 258, no. 1, pp. 182–188.

    Article  CAS  Google Scholar 

  37. Sorolla, M.G., Dalida, M.L., Khemthong, P., and Grisdanurak, N., J. Environ. Sci., 2012. vol. 24, no. 6, pp. 1125–1132. https://doi.org/10.1016/S1001-0742(11)60874-7

    Article  CAS  Google Scholar 

  38. Pant, H.R., Pant, B., Sharma, R.K., Amarjargal, A., Kim, H.J, Park, C.H., Tijing, L.D., and Kim, C.S., Ceram Int., 2013, vol. 39, no. 2, pp. 1503–1510.

    Article  CAS  Google Scholar 

  39. Cheng, X., Yu, X., and Xing, Z., J. Colloid. Interf. Sci., 2012, vol. 372, no. 1, pp. 1–5. https://doi.org/10.1016/j.jcis.2011.11.071

    Article  CAS  Google Scholar 

  40. Zhou, S., Lv, J., Guo, L.K., Xu, G.Q., Wang, D.M., Zheng, Z.X., and Wu, Y.C., Appl. Surf. Sci., 2012, vol. 258, no. 16, pp. 6136–6140.

    Article  CAS  Google Scholar 

  41. Pant, H.R., Park, C.H., Pant, B., Tijing, L.D., Kim, H.Y., and Kim, C.S., Ceram. Int., 2012, vol. 38, no. 4, pp. 2943–2950.

    Article  CAS  Google Scholar 

  42. Shi, H., Zhang, T., An, T., and Li, B., J. Colloid Interf. Sci., 2012, vol. 380, no. 1, pp. 121–127.

    Article  CAS  Google Scholar 

  43. Saha, S., Wang, J.M., and Pal, A., Sep. Purif. Technol., 2012, vol. 89, pp. 147–159.

    Article  CAS  Google Scholar 

  44. Christoforidis, K.C., Figueroa, S.J., and Fernández-García, M., Appl. Catal. B: Environ., 2012, vol. 117, pp. 310–316.

    Article  Google Scholar 

  45. Wang, C., Shi, H., Zhang, P., and Li, Y., Appl. Clay Sci., 2011, vol. 53, no. 4, pp. 646–649.

    Article  CAS  Google Scholar 

  46. Kashi, N., Fard, N.E., and Fazaeli, R., Russ. J. Appl. Chem., 2017, vol. 90, pp. 977–992. https://doi.org/10.1134/S1070427217060210

    Article  CAS  Google Scholar 

  47. Warren, B.E., X-Ray diffraction, New York: Dover Publications, 1990.

    Google Scholar 

  48. Sigot, L., Ducom, G., and Germain, P., Chem. Eng. J., 2016, vol. 287, pp. 47–53. https://doi.org/10.1016/j.cej.2015.11.010

    Article  CAS  Google Scholar 

  49. Elmi Fard, N., Fazaeli, R., and Ghiasi, R., Chem. Eng. & Technol., 2016, vol. 39, pp. 149–157.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Reza Fazaeli or Narges Elmi Fard.

Ethics declarations

The authors declare that they have no conflicts of interest requiring disclosure in this article.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazaeli, R., Fard, N.E. Desulfurization of Gasoline Fuel via Photocatalytic Oxidation/Adsorption Using NaX Zeolite-Based under Mild Conditions: Process Optimization by Central Composite Design. Russ J Appl Chem 93, 973–982 (2020). https://doi.org/10.1134/S1070427220070058

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220070058

Keywords:

Navigation