Skip to main content

Advertisement

Log in

Stress Path Analysis for Characterization of In Situ Stress State and Effect of Reservoir Depletion on Present-Day Stress Magnitudes: Reservoir Geomechanical Modeling in the Gulf of Suez Rift Basin, Egypt

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

A reservoir geomechanical modeling has been attempted in the hydrocarbon-bearing Miocene formations in the offshore Badri field, Gulf of Suez, Egypt. Pore pressure established from the direct downhole measurements indicated sub-hydrostatic condition in the depleted mid-Miocene Hammam Faraun and Kareem reservoirs. Vertical stress (Sv) estimated using bulk density data yielded an average of 0.98 PSI/feet (22.17 MPa/km) gradient. Magnitudes of minimum (Shmin) and maximum (Shmax) horizontal stresses were deduced from the poro-elastic model. Relative stress magnitudes (Sv ≥ Shmax > Shmin) reflect a normal faulting tectonic stress in the Badri field. Pore pressure and stress perturbations (ΔPP and ΔSh) in the depleted reservoirs investigated from actual measurements recognized ‘stress path’ values of 0.54 and 0.59 against the Hammam Faraun and Kareem Formations, respectively. These stress path values are far away from the normal faulting limit (0.68), indicating induced normal faulting or fault reactivation to be unlikely at the present depletion rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

Notes

  1. 1 feet = 3.28 m.

  2. 1 PSI/feet = 22.62 MPa/km; 1 Feet = 3.28 m; 1 PSI = 0.00689 MPa.

References

  • Abbas, A. K., Alameedy, U., Alsaba, M., & Rushdi, S. (2018). Wellbore trajectory optimization using rate of penetration and wellbore stability analysis. In SPE international heavy oil conference and exhibition, Kuwait City, Kuwait, Dec 10-12. SPE-193755-MS. https://doi.org/10.2118/193755-ms.

  • Abdel-Gawad, M. (1970). A discussion on the structure and evolution of the Red Sea and the nature of the Red Sea, Gulf of Aden and Ethiopia rift junction—The Gulf of Suez, a brief review of stratigraphy and structure. Philosophical Transactions of the Royal Society of London. Series A, Mathematical and Physical Sciences, 267(1181), 41–48.

    Google Scholar 

  • Abudeif, A. M., Attia, M. M., Al-Hashab, H. M., & Radwan, A. E. (2018). Hydrocarbon type detection using the synthetic logs: A case study, Baba member, Gulf of Suez, Egypt. Journal of African Earth Sciences, 144, 176–182. https://doi.org/10.1016/j.jafrearsci.2018.04.017.

    Article  Google Scholar 

  • Abudeif, A. M., Attia, M. M., & Radwan, A. E. (2016a). New simulation technique to estimate the hydrocarbon type for the two untested members of Belayim Formation in the absence of pressure data, Badri Field, Gulf of Suez, Egypt. Arabian Journal of Geosciences, 9, 218. https://doi.org/10.1007/s12517-015-2082-2.

    Article  Google Scholar 

  • Abudeif, A. M., Attia, M. M., & Radwan, A. E. (2016b). Petrophysical and petrographic evaluation of Sidri Member of Belayim Formation, Badri field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 115, 108–120. https://doi.org/10.1016/j.jafrearsci.2015.11.028.

  • Addis, M. A. (1997a). Reservoir depletion and its effect on wellbore stability evaluation. International Journal of Rock Mechanics and Mining Sciences, 34(3), 4.e1–4.e17.

    Google Scholar 

  • Addis, M. A. (1997b). The stress-depletion response of reservoirs. In SPE annual technical conference and exhibition, San Antonio, TX, Oct 5–8. https://doi.org/10.2118/38720-ms.

  • Alsharhan, A. S. (2003). Petroleum geology and potential hydrocarbon plays in the Gulf of Suez rift basin, Egypt. AAPG Bulletin, 87(1), 143–180.

    Google Scholar 

  • Alsharhan, A. S., & Salah, M. G. (1995). Geology and hydrocarbon habitat in rift setting, northern and central Gulf of Suez, Egypt. Bulletin of Canadian Petroleum Geology, 43(2), 156–176.

    Google Scholar 

  • Altmann, J. B., Muller, T. M., Muller, B. I. R., Tingay, M. R. P., & Heidbach, O. (2010). Poroelastic contribution to the reservoir stress path. International Journal of Rock Mechanics and Mining Sciences, 47(7), 1104–1113.

    Google Scholar 

  • Amiri, M., Lashkaripour, G. R., Ghabezloo, S., Moghaddas, N. H., & Tajareh, M. H. (2019). Mechanical earth modeling and fault reactivation for CO2-enhanced oil recovery in Gachsaran oil field, south-west of Iran. Environmental Earth Sciences, 78, 112.

    Google Scholar 

  • Attia, M., Abudeif, A., & Radwan, A. (2015). Petrophysical analysis and hydrocarbon potentialities of the untested Middle Miocene Sidri and Baba sandstone of Belayim Formation, Badri field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 109, 120–130. https://doi.org/10.1016/j.jafrearsci.2015.05.020.

    Article  Google Scholar 

  • Baouche, R., Sen, S., & Boutaleb, K. (2020a). Present day in-situ stress magnitude and orientation of horizontal stress components in the eastern Illizi basin, Algeria: A geomechanical modeling. Journal of Structural Geology, 132, 103975. https://doi.org/10.1016/j.jsg.2019.103975.

    Article  Google Scholar 

  • Baouche, R., Sen, S., & Boutaleb, K. (2020b). Distribution of pore pressure and fracture pressure gradients in the Paleozoic sediments of Takouazet field, Illizi basin, Algeria. Journal of African Earth Sciences, 164, 103778. https://doi.org/10.1016/j.jafrearsci.2020.103778.

  • Baouche, R., Sen, S., & Ganguli, S. S. (2020d). Pore pressure and in situ stress magnitudes in the Bhiret Hammou hydrocarbon field, Berkine Basin, Algeria. Journal of Afrian Earth Sciences, 171, 103945. https://doi.org/10.1016/j.jafrearsci.2020.103945.

  • Baouche, R., Sen, S., Sadaoui, M., Boutaleb, K., & Ganguli, S. S. (2020c). Characterization of pore pressure, fracture pressure, shear failure and its implications for drilling, wellbore stability and completion design—A case study from the Takouazet field, Illizi Basin, Algeria. Marine and Petroleum Geology, 120, 104510. https://doi.org/10.1016/j.marpetgeo.2020.104510.

    Article  Google Scholar 

  • Blanton, T. L., & Olson, J. E. (1999). Stress magnitudes from logs-effects of tectonic strains and temperature. SPE Reservoir Evaluation & Engineering, 2(1), 62–68.

    Google Scholar 

  • Bosworth, W. (1995). A high-strain rift model for the southern Gulf of Suez (Egypt). In Lambiase, J. J. (Ed.), Hydrocarbon Habitat in Rift Basins, Special Publications (Vol. 80, pp. 72–102.). London: Geological Society.

  • Bosworth, W., & Durocher, S. (2017). Present-day stress fields of the Gulf of Suez (Egypt) based on exploratory well data: Non-uniform regional extension and its relation to inherited structures and local plate motion. Journal of African Earth Sciences, 136, 136–147.

    Google Scholar 

  • Bosworth, W., & McClay, K. R. (2001). Structural and stratigraphic evolution of the Gulf of Suez rift: A synthesis. In P. A. Zeigler, W. Cavazza, A. H. F. R. Robertson, & S. Crasquin Soleau (Eds.), Peritethyian Rift/Wrench basins and passive margins (Vol. 186, pp. 567–606). Memoirs: Museum National d’Historie Naturelle de Paris.

    Google Scholar 

  • Breckels, I. M., & van Eekelen, H. A. M. (1982). Relationship between horizontal stress and depth in sedimentary basins. Journal of Petroleum Technology, 34(09), 2191–2199. https://doi.org/10.2118/10336-PA.

    Article  Google Scholar 

  • Candela, T., Osinga, S., Ampuero, J., Wassing, B., Pluymaekers, M., Fokker, P. A., et al. (2019). Depletion-induced seismicity at the Groningen gas field, Coulomb rate-and-state models including differential compaction effect. Journal of Geophysical Research, Solid Earth, 124(7), 7081–7104.

    Google Scholar 

  • Chan, A. W., & Zoback, M. D. (2002). Deformation Analysis in Reservoir Space (DARS): A simple formalism for prediction of reservoir deformation with depletion. In SPE/ISRM rock mechanics conference, Irving, TX, Oct 20–23. SPE/ISRM 78174. https://doi.org/10.2118/78174-ms.

  • Chang, C., Zoback, M. D., & Khaskar, A. (2006). Empirical relations between rock strength and physical properties in sedimentary rocks. Journal of Petroleum Science and Engineering, 51, 223–237.

    Google Scholar 

  • Colletta, B. P. L. Q., Le Quellec, P., Letouzey, J., & Moretti, I. (1988). Longitudinal evolution of the Suez rift structure (Egypt). Tectonophysics, 153(1–4), 221–233.

    Google Scholar 

  • Dahm, T., Cesca, S., Hainzl, S., Braun, T., & Krüger, F. (2015). Discrimination between induced, triggered, and natural earthquakes close to hydro-carbon reservoirs: A probabilistic approach based on the modeling of depletion-induced stress changes and seismological source parameters. Journal of Geophysical Research Solid Earth, 120, 2491–2509.

    Google Scholar 

  • Egyptian General Petroleum Corporation (EGPC). (1996). Gulf of Suez oil fields (A comprehensive overview).

  • El-Naby, A. A., El-Aal, M. A., Kuss, J., Boukhary, M., & Lashin, A. (2009). Structural and basin evolution in Miocene time, southwestern Gulf of Suez, Egypt. Neues Jahrbuch für Geologie und Paläontologie - Abhandlungen, 251(3), 331–353. https://doi.org/10.1127/0077-7749/2009/0251-0331.

  • Engelder, T., & Fischer, M. P. (1994). Influence of poroelastic behavior on the magnitude of minimum horizontal stress, Sh in over pressured parts of sedimentary basins. Geology, 22(10), 949–952.

    Google Scholar 

  • Ervine, W. B., & Bell, J. S. (1987). Subsurface in situ stress magnitudes from oil-well drilling records, an example from the Venture area, offshore eastern Canada. Canadian Journal of Earth Sciences, 24(9), 1748–1759.

    Google Scholar 

  • Evans, A. L. (1988). Neogene tectonic and stratigraphic events in the Gulf of Suez rift area, Egypt. Tectonophysics, 153(1–4), 235–247.

    Google Scholar 

  • Ganguli, S. S. (2017). Integrated Reservoir Studies for CO2-enhanced oil recovery and sequestration: Application to an Indian Mature Oil Field. Springer Thesis Series. Berlin: Springer; ISBN: 978-3-319-55842-4. https://doi.org/10.1007/978-3-319-55843-1.

  • Ganguli, S. S., & Sen, S., (2018). A comprehensive geomechanical assessment of an Indian mature oil field for CO2-enhanced oil recovery and its sequestration. In American Geophysical Union (AGU) fall meeting, Washington, DC, December 10–14.

  • Ganguli, S. S., & Sen, S. (2020). Investigation of present-day in situ stresses and pore pressure in the south Cambay Basin, western India, Implications for drilling, reservoir development and fault reactivation. Marine and Petroleum Geology, 118, 104422. https://doi.org/10.1016/j.marpetgeo.2020.104422.

    Article  Google Scholar 

  • Ganguli, S. S., Sen, S., & Kumar, M. (2017). Geomechanical analysis for feasible CO2 storage in an Indian mature oil field. In 12th Biennial international conference & exposition, SPG, Jaipur, India November 17–19.

  • Ganguli, S. S., Vedanti, N., Pandey, O. P., & Dimri, V. P. (2018). Deep thermal regime, temperature induced over-pressured zone and implications for hydrocarbon potential in the Ankleshwar oil field, Cambay basin, India. Journal of Asian Earth Sciences, 161, 93–102.

    Google Scholar 

  • Goulty, N. R. (2003). Reservoir stress path during depletion of Norwegian chalk oilfields. Petroleum Geoscience, 9, 233–241.

    Google Scholar 

  • Haug, C., Nüchter, J.-A., & Henk, A. (2018). Assessment of geological factors potentially affecting production-induced seismicity in North German gas field. Geomechanics for Energy and Environment, 16, 15–31.

    Google Scholar 

  • Hillis, R. (2000). Pore pressure/stress coupling and its implications for seismicity. Exploration Geophysics, 31(2), 448–454.

    Google Scholar 

  • Hillis, R. R. (2001). Coupled changes in pore pressure and stress in oil fields and sedimentary basins. Petroleum Geoscience, 7, 419–425.

    Google Scholar 

  • Hofmann, R., Xu, X., Batzle, M., Prasad, M., Furre, A. K., & Pillitteri, A. (2005). Effective pressure or what is the effect of pressure? Lead. Edge, 24, 1256–1260.

    Google Scholar 

  • Hol, S., van der Linden, A., Bierman, S., Marcelis, F., & Makurat, A. (2018). Rock physical controls on production-induced compaction in the Groningen field. Scientific Reports, 8, 7156.

    Google Scholar 

  • Hussein, H. M., Elenean, K. M., Marzouk, I. A., Korrat, I. M., Abu El-Nader, I. F., Ghazala, H., et al. (2013). Present-day tectonic stress regime in Egypt and surrounding area based on inversion of earthquake focal mechanisms. Journal of African Earth Sciences, 81, 1–15.

    Google Scholar 

  • Javani, D., Aadnoy, B., Rastegarnia, M., Nadimi, S., Aghighi, M. A., & Maleki, B. (2017). Failure criterion effect on solid production and selection of completion solution. Journal of Rock Mechanics and Geotechnical Engineering, 9, 1123–1130.

    Google Scholar 

  • Khaksar, A., Taylor, P. G., Fang, Z., Kayes, T., Salazar, A., & Rahman, K. (2009). Rock strength from core and logs, where we stand and ways to go. In SPE EUROPEC/EAGE annual conference and exhibition held in Amsterdam, the Netherlands, June 8–11, SPE 121972. https://doi.org/10.2118/121972-ms.

  • Kidambi, T., & Kumar, G. S. (2016). Mechanical earth modeling for a vertical well drilled in a naturally fractured tight carbonate gas reservoir in the Persian Gulf. Journal of Petroleum Science and Engineering, 141, 38–51.

    Google Scholar 

  • Knott, S. D., Beach, A., Welbon, A. I., & Brockbank, P. J. (1995). Basin inversion in the Gulf of Suez, implications for exploration and development in failed rifts. Geological Society, London, Special Publications, 88(1), 59–81.

    Google Scholar 

  • Lal, M. (1999). Shale stability, drilling fluid interaction and shale strength. In SPE Latin American and Caribbean petroleum engineering conference, Caracas Venezuela, April 21–23. https://doi.org/10.2118/54356-ms.

  • Li, Q., Aguilera, R., & Ley, H. C. (2019). A correlation for estimating Biot coefficient. In SPE Western regional meeting, San Jose, CA, USA, April 23–26. SPE 195359. https://doi.org/10.2118/195359-ms.

  • Li, L., Tan, J., Wood, D. A., Zhao, Z., Becker, D., Lyu, Q., et al. (2019b). A review of the current status of induced seismicity monitoring for hydraulic fracturing in unconventional tight oil and gas reservoirs. Fuel, 242, 195–210.

    Google Scholar 

  • Lyberis, N. (1988). Tectonic evolution of the Gulf of Suez and the Gulf of Aqaba. Tectonophysics, 153(1–4), 209–220.

    Google Scholar 

  • Maury, V., Grasso, J. R., & Wittlinger, G. (1990). Lacq gas field (France), monitoring of induced subsidence and seismicity consequences on gas production and field operation. In European petroleum conference, Hague, the Netherlands, Oct 21–24. SPE-20887-MS. https://doi.org/10.2118/20887-ms.

  • Mohammed, H. Q., Abbas, A. K., & Dahm, H. H. (2018). Wellbore instability analysis for Nahr Umr Formation in Southern Iraq. In 52nd U.S. rock mechanics/geomechanics symposium, Seattle, WA, June 17–20. ARMA-2018-916.

  • Mortazavi, A., & Atapour, H. (2018). An experimental study of stress changes induced by reservoir depletion under true triaxial stress loading conditions. Journal of Petroleum Science and Engineering, 171, 1366–1377.

    Google Scholar 

  • Moustafa, A. R. (2002). Controls on the geometry of transfer zones in the Suez rift and northwest Red Sea: Implications for the structural geometry of rift systems. AAPG Bulletin, 86, 979–1002.

    Google Scholar 

  • Najibi, A. R., Ghafoori, M., Lashkaripour, G. R., & Asef, M. R. (2017). Reservoir geomechanical modeling: In-situ stress, pore pressure, and mud design. Journal of Petroleum Science and Engineering, 151, 31–39.

    Google Scholar 

  • Paslay, P. R. (1994). Stress analysis of drillstrings. In University of Tulsa Centennial petroleum engineering symposium. https://doi.org/10.2118/27976-ms.

  • Patton, T. L., Moustafa, A. R., Nelson, R. A., & Abdine, S. A. (1994). Tectonic evolution and structural setting of the Suez Rift, Chapter 1, Part I. Type Basin, Gulf of Suez.

  • Peijs, J. A. M. M., Bevan, T. G., & Piombino, J. T. (2012). The Gulf of Suez rift basin. In D. F. G. Roberts & A. W. Bally (Eds.), Regional geology and tectonics, phanerozoic rift systems and sedimentary basins (pp. 164–194). Amsterdam: Elsevier.

    Google Scholar 

  • Plumb, R. A., Evans, K. F., & Engelder, T. (1991). Geophysical log responses and their correlation with bed to bed stress contrasts in Paleozoic rocks, Appalachian plateau, New York. Journal of Geophysical Research, 91, 14509–14528. https://doi.org/10.1029/91JB00896.

  • Radwan, A. E. (2014). Petrophysical evaluation for Sidri and Baba members within Belayim Formation in the region of Badri field, Gulf of Suez, Egypt. M.Sc. Thesis. https://doi.org/10.13140/rg.2.2.22772.09601.

  • Radwan, A. E. (2018). New petrophysical approach and study of the pore pressure and formation damage in Badri, Morgan and Sidki fields, Gulf of Suez Region Egypt, PhD Thesis. https://doi.org/10.13140/rg.2.2.26651.82727.

  • Radwan, A. E. (2020a). Wellbore stability analysis and pore pressure study in Badri field using limited data, Gulf of Suez, Egypt, AAPG/Datapages Search and Discovery Article #20476 (2020). https://doi.org/10.1306/20476radwan2020.

  • Radwan, A. E. (2020b). Hydrocarbon type estimation using the synthetic logs: A case study in Baba Member, Gulf of Suez, Egypt, AAPG/Datapages Search and Discovery Article #20475 (2020). https://doi.org/10.1306/20475radwan2020.

  • Radwan, A. E. (2020c). Effect of clay minerals in oil and gas formation damage problems and production decline: A case study, Gulf of Suez, Egypt, AAPG/Datapages Search and Discovery Article #20477 (2020). https://doi.org/10.1306/20477radwan2020.

  • Radwan, A. E., Abudeif, A. M., & Attia, M. M. (2020c). Investigative petrophysical fingerprint technique using conventional and synthetic logs in siliciclastic reservoirs: A case study, Gulf of Suez basin, Egypt. Journal of African Earth Sciences, 167, 103868. https://doi.org/10.1016/j.jafrearsci.2020.103868.

    Article  Google Scholar 

  • Radwan, A. E., Abudeif, A. M., Attia, M. M., Elkhawaga, M. A., Abdelghany, W. K., & Kasem, A. A. (2020a). Geopressure evaluation using integrated basin modelling, well-logging and reservoir data analysis in the northern part of the Badri oil field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 162, 103743. https://doi.org/10.1016/j.jafrearsci.2019.103743.

    Article  Google Scholar 

  • Radwan, A. E., Abudeif, A. M., Attia, M. M., & Mahmoud, M. (2019a). Development of formation damage diagnosis workflow, application on Hammam Faraun reservoir, a case study, Gulf of Suez, Egypt. Journal of African Earth Sciences, 153, 42–53. https://doi.org/10.1016/j.jafrearsci.2019.02.012.

    Article  Google Scholar 

  • Radwan, A. E., Abudeif, A., Attia, M., & Mahmoud, M. (2019c). Formation damage diagnosis, application on Hammam Faraun Reservoir: A case study. Gulf of Suez, Egypt. In Offshore Mediterranean conference. https://doi.org/10.13140/rg.2.2.22352.66569.

  • Radwan, A. E., Abudeif, A., Attia, M., & Mahmoud, M. (2019d). Development of formation damage diagnosis workflow, application on Hammam Faraun reservoir: A case study, Gulf of Suez, Egypt. In Offshore Mediterranean conference. ISBN: 9788894043679-2019.

  • Radwan, A. E., Abudeif, A. M., Attia, M. M., & Mohammed, M. A. (2019b). Pore and fracture pressure modeling using direct and indirect methods in Badri Field, Gulf of Suez, Egypt. Journal of African Earth Sciences, 156, 133–143. https://doi.org/10.1016/j.jafrearsci.2019.04.015

    Article  Google Scholar 

  • Radwan, A. E., Kassem, A. A., & Kassem, A. (2020b). Radwany Formation, a new formation name for the Early-Middle Eocene carbonate sediments of the offshore October oil field, Gulf of Suez, Contribution to the Eocene sediments in Egypt. Marine and Petroleum Geology, 116, 104304. https://doi.org/10.1016/j.marpetgeo.2020.104304.

    Google Scholar 

  • Ramdhan, A. M., & Goulty, N. R. (2011). Overpressure and mudrock compaction in the Lower Kutai Basin, Indonesia, a radical reappraisal. AAPG Bulletin, 95, 1725–1744.

    Google Scholar 

  • Rhine, J. M., Hassouba, A. B., Shishkevich, L., Shafi, A., Azzazi, G., Nashaat, H., et al. (1988). Evolution of a Miocene fan delta, a giant oil field in the Gulf of Suez, Egypt. In Fan deltas, sedimentology and tectonic settings (pp. 239–250). London: Blackie and Sons.

  • Rohais, S., Barrois, A., Colletta, B., & Moretti, I. (2016). Pre-salt to salt stratigraphic architecture in a rift basin, insights from a basin-scale study of the Gulf of Suez (Egypt). Arabian Journal of Geosciences, 9(4), 317.

    Google Scholar 

  • Ruistuen, H., Teufel, L. W., & Rhett, D. (1996). Influence of Reservoir stress path on deformation and permeability of weakly cemented sandstone reservoirs. In SPE annual technical conference and exhibition. https://doi.org/10.2118/36535-ms.

  • Ruth, P. J., Nelson, E. J., & Hillis, R. R. (2006). Fault reactivation potential during CO2 injection in the Gippsland Basin, Australia. Exploration Geophysics, 37(1), 50–59.

    Google Scholar 

  • Salz, L. B. (1977). Relationship between fracture propagation pressure and pore pressure. In SPE annual fall technical conference and exhibition. https://doi.org/10.2118/6870-ms.

  • Santarelli, F. J., Tronvoll, J. T., Svennekjaer, M., Skeie, H., Henriksen, R., & Bratli, R. K. (1998). Reservoir stress path: The depletion and the rebound. In SPE/ISRM Eurock, Trondheim, Norway, July 8–10. SPE/ISRM 47350. https://doi.org/10.2118/47350-ms.

  • Schutz, K. I. (1994). Structure and stratigraphy of the Gulf of Suez, Egypt, Chapter 2, Part I. Type Basin, Gulf of Suez.

  • Segall, P., & Fitzgerald, S. D. (1996). A note on induced stress changes in hydrocarbon and geothermal reservoirs. Tectonophysics, 289, 117–128.

    Google Scholar 

  • Sen, S., Corless, J., Dasgupta, S., Maxwell C., & Kumar, M. (2017). Issues faced while calculating overburden gradient and picking shale zone to predict pore pressure. In First EAGE workshop on pore pressure prediction, Mar 19–21, Pau, France, Paper Mo PP1B 02. https://doi.org/10.3997/2214-4609.201700042.

  • Sen, S., & Ganguli, S. S. (2019). Estimation of pore pressure and fracture gradient in Volve Field, Norwegian North Sea. In SPE oil and gas India conference and exhibition, Mumbai, India, April 9–11. SPE-194578-MS. https://doi.org/10.2118/194578-ms.

  • Sen, S., Kundan, A., Kalpande, V., & Kumar, M. (2019). The present-day state of tectonic stress in the offshore Kutch-Saurashtra Basin, India. Marine and Petroleum Geology, 102, 751–758. https://doi.org/10.1016/j.marpetgeo.2019.01.018.

    Article  Google Scholar 

  • Sen, S., Kundan, A., & Kumar, M. (2018a). Post-drill analysis of pore pressure and fracture gradient from well logs and drilling events—An integrated case study of a high pressure exploratory well from Panna East, Mumbai Offshore basin, India. In Pore pressure and geomechanics from exploration to abandonment, AAPG Geosciences Technology Workshop, Perth, Australia, June 6–7https://doi.org/10.1306/42289Sen2018.

  • Sen, S., Kundan, A., & Kumar, M. (2020). Modeling pore pressure, fracture pressure and collapse pressure gradients in offshore Panna, Western India, implications for drilling and wellbore stability. Natural Resources Research. https://doi.org/10.1007/s11053-019-09610-5.

  • Sen, S., Maxwell, C., & Kumar, M. (2018b). Real time pore pressure interpretation from drilling events—A case study from high pressure offshore exploratory well. In Operations geoscience adding value. London: The Geological Society.

  • Taghipour, M., Ghafoori, M., Lashkaripour, G. R., Moghaddas, N. H., & Molaghab, A. (2019). Estimation of the current stress field and fault reactivation analysis in the Asmari reservoir, SW Iran. Petroleum Science, 16, 513–526. https://doi.org/10.1007/s12182-019-0331-9.

    Article  Google Scholar 

  • Teufel L. W., Rhett D. W., & Farrell H. E. (1991). Effect of reservoir depletion and pore pressure drawdown on in situ stress and deformation in the Ekofisk Field, North Sea. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 29(2), A101. https://doi.org/10.1016/0148-9062(92)92352-d.

  • Tingay, M. R. P., Hillis, R. R., Morley, C. K., Swarbrick, R. E., & Okpere, E. C. (2003). Pore pressure/stress coupling in Brunei Darussalam—Implications for shale injection. Geological Society, London, Special Publications, 216(1), 369–379.

    Google Scholar 

  • Townend, J., & Zoback, M. (2000). How faulting keeps the crust strong. Geology, 28(5), 399–402. https://doi.org/10.1130/0091-7613(2000)28%3C399:HFKTCS%3E2.0.CO;2.

  • Van Geuns, L., & van Thienen-Visser, K. (2017). Editorial. Netherlands Journal of Geosciences, 96(5), s1–s2. https://doi.org/10.1017/njg.2017.39.

    Article  Google Scholar 

  • Wang, H. F. (2000). Theory of linear poroelasticity. Princeton: Princeton University Press.

    Google Scholar 

  • Whitehead, W. S., Hunt, E. R., & Holditch, S. A. (1987). The effects of lithology and reservoir pressure on the in-situ stresses in the Waskom (Travis Peak) Field. In SPE/DOE Joint Symposium on Low Permeability Reservoirs, Denver, Colorado, May 18–19. https://doi.org/10.2118/16403-ms.

  • Wirput, D. J., & Zoback, M. D. (2000). Abstract, Fault reactivation and hydrocarbon leakage along a previously sealing normal fault in the northern North Sea. AAPG Bulletin. https://doi.org/10.1306/a9673284-1738-11d7-8645000102c1865d.

    Article  Google Scholar 

  • Woodland, D. C., & Bell, J. S. (1989). In situ stress magnitudes from mini-frac records in Western Canada. Journal of Canadian Petroleum Technology. https://doi.org/10.2118/89-05-01.

    Article  Google Scholar 

  • Youssef, A. (2011). Early—Middle Miocene Suez Syn-rift-Basin, Egypt, a sequence stratigraphy framework. GeoArabia, 16(1), 113–134.

    Google Scholar 

  • Zaky, Kh. S. (2017). Paleostress analysis of the brittle deformations on the Northwestern margin of the Red Sea and the Southern Gulf of Suez, Egypt. Geotectonics, 51(6), 625–652.

    Google Scholar 

  • Zhang, J. (2011). Pore pressure prediction from well logs, methods, modifications, and new approaches. Earth-Science Reviews, 108(1–2), 50–63. https://doi.org/10.1016/j.earscirev.2011.06.001.

    Article  Google Scholar 

  • Zhang, J. (2013). Borehole stability analysis accounting for anisotropies in drilling to weak bedding planes. International Journal of Rock Mechanics and Mining Sciences, 60, 160–170.

    Google Scholar 

  • Zhang, L., Cao, P., & Radha, K. C. (2010). Evaluation of rock strength criteria for wellbore stability analysis. International Journal of Rock Mechanics and Mining Sciences, 47(8), 1304–1316. https://doi.org/10.1016/j.ijrmms.2010.09.001.

  • Zoback, M. D. (2007). Reservoir geomechanics. CA: Stanford University.

    Google Scholar 

  • Zoback, M. D., & Zinke, J. C. (2002). Production-induced normal faulting in the Valhall and Ekofisk oil fields. Pure and Applied Geophysics, 159, 403–420.

    Google Scholar 

Download references

Acknowledgments

We thank Dr. John Carranza, Editor-in-Chief of Natural Resources research, and the two reviewers for their comments and suggestions, which greatly benefited our manuscript. Ahmed Radwan extends his acknowledgment to the ULAM Programme, awarded by the Polish National Agency for Academic Exchange (NAWA) under project PPN/ULM/2019/1/00305/U/00001 for facilitating and funding his research as well as deep thanks to Prof. Alfred Uchman for his continuous support during the research period. Gulf of Suez Petroleum Company (GUPCO) and Egyptian Petroleum Corporation (EPC) are sincerely acknowledged which supported this work with data and required permissions. SS thanks Geologix Limited for providing the access of Pore Pressure and 1D Geomechanics module of GEO Suite of software, which has been instrumental for the analyses presented in this work. Interpretation documented in this manuscript is solely of the authors and does not necessarily represent their respective organizations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Souvik Sen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Radwan, A., Sen, S. Stress Path Analysis for Characterization of In Situ Stress State and Effect of Reservoir Depletion on Present-Day Stress Magnitudes: Reservoir Geomechanical Modeling in the Gulf of Suez Rift Basin, Egypt. Nat Resour Res 30, 463–478 (2021). https://doi.org/10.1007/s11053-020-09731-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09731-2

Keywords

Navigation