Skip to main content
Log in

Experimental Investigation of Thermal Effect on Fracability Index of Geothermal Reservoirs

  • Original Paper
  • Published:
Natural Resources Research Aims and scope Submit manuscript

Abstract

The thermal effect is not considered in the current fracability index model. In this paper, we investigated experimentally the formation capacity of fracture networks in hot dry rocks at different temperatures, by using rock mechanics triaxial testing system and acoustic emission monitoring. A new brittleness index with consideration of thermal effect is proposed on the basis of crack volumetric strain calculated at different stress levels, which captures the following two characteristics: (1) thermal micro-crack density in the crack closure stage and (2) crack propagation, nucleation and coalescence by external stress. Then, a comprehensive fracability index model is established, which integrates the thermal effect and fracture toughness at different temperatures and confining pressures. The fracability index calculated by the new model is consistent with acoustic emission characteristic, microstructure analysis and b-value analysis, which verify that the proposed model is reliable. The results show that both temperature and confining pressure have a significant effect of formation capacity of fracture networks in hot dry rocks. This study provides new insight into improving the thermal efficiency in geothermal reservoirs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15

Similar content being viewed by others

References

  • Ai, C., Zhang, J., Li, Y., Zeng, J., Yang, X., & Wang, J. (2016). Estimation criteria for rock brittleness based on energy analysis during the rupturing process. Rock Mechanics and Rock Engineering, 49(12), 4681–4698.

    Article  Google Scholar 

  • Andreev, G. E.(1995). Brittle failure of rock materials: Test results and constitutive models (p. 446). Balkema, Rotterdam: CRC Press.

    Google Scholar 

  • Ashby, M. F., & Sammis, C. G. (1990). The damage mechanics of brittle solids in compression. Pure and Applied Geophysics, 133(3), 489–521.

    Article  Google Scholar 

  • Bai, M. (2016). Why are brittleness and fracability not equivalent in designing hydraulic fracturing in tight shale gas reservoirs. Petroleum, 2(1), 1–19.

    Article  Google Scholar 

  • Baud, P., Wong, T., & Zhu, W. (2014). Effects of porosity and crack density on the compressive strength of rocks. International Journal of Rock Mechanics and Mining Sciences, 67, 202–211.

    Article  Google Scholar 

  • Chaki, S., Takarli, M., & Agbodjan, W. P. (2008). Influence of thermal damage on physical properties of a granite rock: Porosity, permeability and ultrasonic wave evolutions. Construction and Building Materials, 22(7), 1456–1461.

    Article  Google Scholar 

  • Civan, F., Rai, C. S., & Sondergeld, C. H. (2011). Shale-gas permeability and diffusivity inferred by improved formulation of relevant retention and transport mechanisms. Transport in Porous Media, 86(3), 925–944.

    Article  Google Scholar 

  • Fang, C., & Amro, M. (2014). Influence Factors of Fracability in Nonmarine Shale. Presented at the SPE/EAGE European Unconventional Resources Conference and Exhibition, Society of Petroleum Engineers.. https://doi.org/10.2118/167803-MS.

    Article  Google Scholar 

  • Finsterle, S., Zhang, Y., Pan, L., Dobson, P., & Oglesby, K. (2013). Microhole arrays for improved heat mining from enhanced geothermal systems. Geothermics, 47, 104–115.

    Article  Google Scholar 

  • Fortin, J., Stanchits, S., Dresen, G., & Gueguen, Y. (2009). Acoustic emissions monitoring during inelastic deformation of porous sandstone: Comparison of three modes of deformation. Pure and Applied Geophysics, 166(5–7), 823–841.

    Article  Google Scholar 

  • Guo, J.-C., Luo, B., Zhu, H.-Y., Wang, Y.-H., Lu, Q.-L., & Zhao, X. (2015a). Evaluation of fracability and screening of perforation interval for tight sandstone gas reservoir in western Sichuan Basin. Journal of Natural Gas Science and Engineering, 25, 77–87.

    Article  Google Scholar 

  • Guo, T., Tang, S., Sun, J., Gong, F., Liu, X., Qu, Z., et al. (2020). A coupled thermal-hydraulic-mechanical modeling and evaluation of geothermal extraction in the enhanced geothermal system based on analytic hierarchy process and fuzzy comprehensive evaluation. Applied Energy, 258, 113981.

    Article  Google Scholar 

  • Guo, T., Zhang, S., Ge, H., Wang, X., Lei, X., & Xiao, B. (2015b). A new method for evaluation of fracture network formation capacity of rock. Fuel, 140, 778–787.

    Article  Google Scholar 

  • Gutenberg, B., & Richter, C. F. (1950). Seismicity of the Earth and Associated Phenomena. Bulletin of the Seismological Society of America, 2(1), 68-68.

    Google Scholar 

  • Han, S., Cheng, Y., Gao, Q., Yan, C., & Han, Z. (2018). Experimental study of the effect of liquid nitrogen pretreatment on shale fracability. Journal of Natural Gas Science and Engineering, 60, 11–23.

    Article  Google Scholar 

  • He, R., Yang, Z., Li, X., Li, Z., Liu, Z., & Chen, F. (2019). A comprehensive approach for fracability evaluation in naturally fractured sandstone reservoirs based on analytical hierarchy process method. Energy Science & Engineering, 7(2), 529–545.

    Article  Google Scholar 

  • Holt, R. M., Fjaer, E., Nes, O. M., & Alassi, H. T. (2011). A Shaly Look At Brittleness. Presented at the 45th U.S. Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association. https://www.onepetro.org/conference-paper/ARMA-11-366.

  • Hou, J., Cao, M., & Liu, P. (2018). Development and utilization of geothermal energy in China: Current practices and future strategies. Renewable Energy, 125, 401–412.

    Article  Google Scholar 

  • Hucka, V., & Das, B. (1974). Brittleness determination of rocks by different methods. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 11(10), 389–392. https://doi.org/10.1016/0148-9062(74)91109-7.

    Article  Google Scholar 

  • Jahandideh, A., & Jafarpour, B. (2016). Optimization of hydraulic fracturing design under spatially variable shale fracability. Journal of Petroleum Science and Engineering, 138, 174–188.

    Article  Google Scholar 

  • Jarvie, D. M., Hill, R. J., Ruble, T. E., & Pollastro, R. M. (2007). Unconventional shale-gas systems: The Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas assessment. AAPG Bulletin, 91(4), 475–499. https://doi.org/10.1306/12190606068.

    Article  Google Scholar 

  • Jin, X., Shah, S. N., Roegiers, J.-C., & Zhang, B. (2015). An integrated petrophysics and geomechanics approach for fracability evaluation in shale reservoirs. SPE Journal, 20(03), 518–526.

    Article  Google Scholar 

  • Kemeny, J. M., & Cook, N. G. W. (1991). Micromechanics of Deformation in Rocks. In S. P. Shah (Ed.), Toughening Mechanisms in Quasi-Brittle Materials (pp. 155–188). Dordrecht: Springer Netherlands. https://doi.org/10.1007/978-94-011-3388-3_10.

  • Kumari, W. G. P., Ranjith, P. G., Perera, M. S. A., Chen, B. K., & Abdulagatov, I. M. (2017). Temperature-dependent mechanical behaviour of Australian Strathbogie granite with different cooling treatments. Engineering Geology, 229, 31–44.

    Article  Google Scholar 

  • Li, Z., Fortin, J., Nicolas, A., Deldicque, D., & Guéguen, Y. (2019a). Physical and mechanical properties of thermally cracked andesite under pressure. Rock Mechanics and Rock Engineering, 52(10), 3509–3529.

    Article  Google Scholar 

  • Li, N., Zou, Y., Zhang, S., Ma, X., Zhu, X., Li, S., et al. (2019b). Rock brittleness evaluation based on energy dissipation under triaxial compression. Journal of Petroleum Science and Engineering, 183, 106349.

    Article  Google Scholar 

  • Lockner, D. (1993). The role of acoustic emission in the study of rock fracture. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 30(7), 883–899.

    Article  Google Scholar 

  • Martin, C. D., & Chandler, N. A. (1994). The progressive fracture of Lac du Bonnet granite. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 31(6), 643–659.

    Article  Google Scholar 

  • Meng, F., Ge, H., Yan, W., Wang, X., Wu, S., & Wang, J. (2016). Effect of saturated fluid on the failure mode of brittle gas shale. Journal of Natural Gas Science and Engineering, 35, 624–636.

    Article  Google Scholar 

  • Mullen, M. J., & Enderlin, M. B. (2012). Fracability Index—More than rock properties. Presented at the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers.. https://doi.org/10.2118/159755-MS.

    Article  Google Scholar 

  • Rahimzadeh Kivi, I., Ameri, M., & Molladavoodi, H. (2018). Shale brittleness evaluation based on energy balance analysis of stress-strain curves. Journal of Petroleum Science and Engineering, 167, 1–19.

    Article  Google Scholar 

  • Rickman, R., Mullen, M. J., Petre, J. E., Grieser, W. V., & Kundert, D. (2008). A practical use of shale petrophysics for stimulation design optimization: all shale plays are not clones of the Barnett Shale. Presented at the SPE Annual Technical Conference and Exhibition, Society of Petroleum Engineers.. https://doi.org/10.2118/115258-MS.

    Article  Google Scholar 

  • Rybacki, E., Meier, T., & Dresen, G. (2016). What controls the mechanical properties of shale rocks? – Part II: Brittleness. Journal of Petroleum Science and Engineering, 144, 39–58.

    Article  Google Scholar 

  • Sui, L., Ju, Y., Yang, Y., Yang, Y., & Li, A. (2016). A quantification method for shale fracability based on analytic hierarchy process. Energy, 115, 637–645.

    Article  Google Scholar 

  • Wang, F. P., & Gale, J. F. W. (2009). Screening criteria for shale-gas systems. Transactions-Gulf Coast Association of Geological Societies, 59, 779–794.

    Google Scholar 

  • Wang, X., Ge, H., Wang, J., Wang, D., & Chen, H. (2016). Evaluation of the Micro-cracks in Shale from the Stress Sensitivity of Ultrasonic Velocities. Rock Mechanics and Rock Engineering, 49(12), 4929–4934.

    Article  Google Scholar 

  • Wang, D., Ge, H., Wang, X., Wang, J., Meng, F., Suo, Y., et al. (2015). A novel experimental approach for fracability evaluation in tight-gas reservoirs. Journal of Natural Gas Science and Engineering, 23, 239–249.

    Article  Google Scholar 

  • Wang, D., Wang, X., Ge, H., Sun, D., & Yu, B. (2020). Insights into the effect of spontaneous fluid imbibition on the formation mechanism of fracture networks in brittle shale: An experimental investigation. ACS Omega, 5(15), 8847–8857.

    Article  Google Scholar 

  • Wang, D., Yu, B., Qin, H., Yan, X., Cheng, W., Liu, Q., et al. (2019). An experimental study on the fracability evaluation of hot dry rock: using an integrated thermo-mechanical model. Presented at the ISRM 14th International Congress of Rock Mechanics, Foz do Iguassu, Brazil: Rock Mechanics for Natural Resources and Infrastructure Development.

  • Wang, G., Zhang, W., Ma, F., Lin, W., Liang, J., & Zhu, X. (2018). Overview on hydrothermal and hot dry rock researches in China. China Geology, 1(2), 273–285.

    Article  Google Scholar 

  • Wei, G., Meng, J., Du, X., & Yang, Y. (2015). Performance analysis on a hot dry rock geothermal resource power generation system based on kalina cycle. Energy Procedia, 75, 937–945.

    Article  Google Scholar 

  • Wu, S., Ge, H., Wang, X., & Meng, F. (2017). Shale failure processes and spatial distribution of fractures obtained by AE monitoring. Journal of Natural Gas Science and Engineering, 41, 82–92.

    Article  Google Scholar 

  • Wu, X., Huang, Z., Zhang, S., Cheng, Z., Li, R., Song, H., et al. (2019). Damage Analysis of High-Temperature Rocks Subjected to LN2 Thermal Shock. Rock Mechanics and Rock Engineering, 52(8), 2585–2603.

    Article  Google Scholar 

  • Wu, J., Zhang, S., Cao, H., Zheng, M., Sun, P., & Luo, X. (2018). Fracability evaluation of shale gas reservoir-A case study in the Lower Cambrian Niutitang formation, northwestern Hunan, China. Journal of Petroleum Science and Engineering, 164, 675–684.

    Article  Google Scholar 

  • Yang, S., Ranjith, P. G., Jing, H.-W., Tian, W.-L., & Ju, Y. (2017). An experimental investigation on thermal damage and failure mechanical behavior of granite after exposure to different high temperature treatments. Geothermics, 65, 180–197.

    Article  Google Scholar 

  • Yang, Y., Sone, H., Hows, A., & Zoback, M. D. (2013). Comparison of Brittleness Indices in Organic-rich Shale Formations. Presented at the 47th U.S. Rock Mechanics/Geomechanics Symposium, American Rock Mechanics Association. https://www.onepetro.org/conference-paper/ARMA-2013-403. Retrieved 29 July 2020.

  • Yuan, J., Zhou, J., Liu, S., Feng, Y., Deng, J., Xie, Q., et al. (2017). An Improved Fracability-Evaluation Method for Shale Reservoirs Based on New Fracture Toughness-Prediction Models. SPE Journal, 22(05), 1704–1713.

    Article  Google Scholar 

  • Zhou, C., Wan, Z., Zhang, Y., & Gu, B. (2018). Experimental study on hydraulic fracturing of granite under thermal shock. Geothermics, 71, 146–155.

    Article  Google Scholar 

  • Zhu, H., Tao, L., Liu, D., Liu, Q., & Jin, X. (2018). Fracability Estimation for Longmaxi Shale: Coupled Brittleness, Stress-Strain and Fracture. Arabian Journal for Science and Engineering, 43(11), 6639–6652.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported financially by the National Science Foundation of China (Grant Nos. 51936001 and 51804033), the Program of Great Wall Scholar (Grant No. CIT & TCD20180313) and Jointly Projects of Beijing Natural Science Foundation and Beijing Municipal Education Commission (Grant No. KZ201810017023).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Daobing Wang, Fujian Zhou or Bo Yu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, D., Zhou, F., Dong, Y. et al. Experimental Investigation of Thermal Effect on Fracability Index of Geothermal Reservoirs. Nat Resour Res 30, 273–288 (2021). https://doi.org/10.1007/s11053-020-09733-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11053-020-09733-0

Keywords

Navigation