Skip to main content
Log in

Regulation of Gene Expression of Cancer/Testis Antigens in Colorectal Cancer Patients

  • GENOMICS. TRANSCRIPTOMICS
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

The transcriptional activity of genes encoding cancer/testis antigens (CTA) and its regulation in colorectal cancer (CRC) is not well understood. The expression of CTA coding genes (CT genes) and possible mechanisms for its regulation, including expression and copy number of DNA methyltransferase genes, copy number of CT genes, microRNA expression, and LINE-1 methylation in CRC were analyzed in this study. The relative expression levels and copy number variation of 19 genes, MAGE-A1, -A2, -A3, -A4, -B1, -B2, GAGE-1, -3, -4, MAGEC1, BAGE, XAGE3, NY-ESO1, SSX2, SCP1, PRAME1, DNMT1, DNMT3A, and DNMT3B, were determined using real-time quantitative PCR. Quantitative methylation of LINE-1 CpG sites was evaluated by pyrosequencing, and multiple parallel sequencing was used to determine the level of microRNA expression. It was found that in colon tumor tissue a multidirectional destabilization of the transcriptional activity of DNMT3A and DNMT3B, associated with copy number variation and a change in expression of the CT genes BAGE, SSX2 and PRAME1, is observed. A strong positive correlation was found between copy number and expression of the BAGE, SSX2, and PRAME1 genes. As a result of multiple parallel sequencing, 6 differentially expressed microRNAs (hsa-miR-143-3p, hsa-miR-26a-5p, hsa-miR-25-3p, hsa-miR-92a-3p, hsa-miR-21-5p, and hsa-let-7i-5p), targeting the CT genes GAGE1, SSX2, PRAME, SCP1, and the gene for DNA methyltransferase 3A (DNMT3A), were found. Data on the mechanisms of the transcriptional activity regulation of CT genes in malignant colon tumors are important for the development of CTA-dependent immunotherapeutic approaches for the treatment of this type of tumor.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.

Similar content being viewed by others

REFERENCES

  1. Kit O.I., Soldatova K.I., Kutilin D.S., Vodolazhsky D.I. 2018. Cancer-testis antigens in diagnosis of colon tumors. Sovrem. Probl. Nauki Obraz.2, 1‒10. https://doi.org/10.17513/spno.27449

    Article  Google Scholar 

  2. Bray F., Ferlay J., Soerjomataram I., Siegel R.L., Torre L.A., Jemal A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin.68 (6), 394‒424.

    Article  Google Scholar 

  3. Vodolazhsky D.I., Kutilin D.S., Mogushkova Kh.A., Kit O.I. 2017. Transcriptional profile of cancer-testis antigens in patients with uterine corpus cancer. Uasp. Sovrem. Onkol.4 (4), 135.

    Google Scholar 

  4. Mahmoud A.M. 2018 Cancer testis antigens as immunogenic and oncogenic targets in breast cancer. Immunotherapy. 10 (9), 769–778. https://doi.org/10.2217/imt-2017-0179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. van der Bruggen P., Traversari C., Chomez P., Lurquin C., De Plaen E., Van den Eynde B., Knuth A., Boon T.A. 2007. Gene encoding an antigen recognized by cytolytic T lymphocytes on a human melanoma. J. Immunol.178(5), 2617‒2621.

    CAS  PubMed  Google Scholar 

  6. Vodolazhsky D.I., Kutilin D.S., Mogushkova Kh.A., Kit O.I. 2018. Specific features of transcription activity of cancer-testis antigens in patients with metastatic and non-metastatic breast cancer. Bull. Exp. Biol. Med.165 (3), 382‒385.

    Article  CAS  Google Scholar 

  7. Kutilin D.S., Nikitin I.S., Kit O.I. 2019. Features of some transcription factors gene expression in the malignancy tissues of the corpus uteri. Usp. Sovrem. Onkol.6 (1), 57‒62.

    Article  Google Scholar 

  8. Vandesompele J., De Preter K., Pattyn F., Poppe B., Van Roy N., De Paepe A., Speleman F. 2002. Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol. 3 (7), 1‒12.

    Article  Google Scholar 

  9. Vodolazhsky D.I., Kutilin D.S., Mogushkova Kh.A., Kit O.I. 2018. Trancriptional profile of testicular cancer antigens in patients with mammary cancer. Med. Immunol. 20 (3), 383‒390.

    Article  Google Scholar 

  10. Kutilin D.S., Airapetova T.G., Anistratov P.A., Pyltsin S.P., Leiman I.A., Karnaukhov N.S., Kit O.I. 2019. Copy number variation in tumor cells and extracellular DNA in patients with lung adenocarcinoma. Bull. Exp. Biol. Med.167 (6), 771–778.

    Article  CAS  Google Scholar 

  11. Hackenberg M., Sturm M., Langenberger D., Falcón-Pérez J.M., Aransay A.M. 2009. miRanalyzer: A microRNA detection and analysis tool for next-generation sequencing experiments. Nucleic Acids Res. 37, 68‒76.

    Article  Google Scholar 

  12. Love M.I., Huber W., Anders S. 2014. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15, 550.

    Article  Google Scholar 

  13. Ding J., Li X., Hu H. 2016. TarPmiR: A new approach for microRNA target site prediction. Bioinformatics. 32 (18), 2768‒2775. https://doi.org/10.1093/bioinformatics/btw318

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Shantha Kumara H.M., Grieco M.J., Caballero O.L., Su T., Ahmed A., Ritter E., Gnjatic S., Cekic V., Old L.J., Simpson A.J., Cordon-Cardo C., Whelan R.L. 2012. MAGE-A3 is highly expressed in a subset of colorectal cancer patients. Cancer Immun.12, 16.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Li M., Yuan Y.H., Han Y., Liu Y.X., Yan L., Wang Y., Gu J. 2005. Expression profile of cancer-testis genes in 121 human colorectal cancer tissue and adjacent normal tissue. Clin. Cancer Res.11 (5), 1809‒1814.

    Article  CAS  Google Scholar 

  16. Grunau C., Brun M.E., Rivals I., Selves J., Hindermann W., Favre-Mercuret M., Granier G., De Sario A. 2008. BAGE hypomethylation, a new epigenetic biomarker for colon cancer detection. Cancer Epidemiol. Biomarkers Prev. 17(6), 1374‒1379.

    Article  CAS  Google Scholar 

  17. Al-Khadairi G., Decock J. 2019. Cancer testis antigens and immunotherapy: where do we stand in the targeting of PRAME? Cancers (Basel). 11 (7), E984.

    Article  Google Scholar 

  18. Epping M.T., Wang L., Edel M.J., Carlée L., Hernandez M., Bernards R. 2005. The human tumor antigen PRAME is a dominant repressor of retinoic acid receptor signaling. Cell. 122 (6), 835–847.

    Article  CAS  Google Scholar 

  19. Al-Khadairi G., Naik A., Thomas R., Al-Sulaiti B., Rizly S., Decock J. 2019. PRAME promotes epithelial-to-mesenchymal transition in triple negative breast cancer. J. Transl. Med.17 (1), 9.

    Article  Google Scholar 

  20. de Bruijn D.R., dos Santos N.R., Kater-Baats E., Thijssen J., van den Berk L., Stap J., Balemans M., Schepens M., Merkx G., van Kessel A.G. 2002. The cancer-related protein SSX2 interacts with the human homologue of a Ras-like GTPase interactor, RAB3IP, and a novel nuclear protein, SSX2IP. Genes Chromosomes Cancer. 34 (3), 285‒298.

    Article  CAS  Google Scholar 

  21. Waterhouse A., Bertoni M., Bienert S., Studer G., Tauriello G., Gumienny R., Heer F.T., de Beer T.A.P., Rempfer C., Bordoli L., Lepore R., Schwede T. 2018. SWISS-MODEL: Homology modelling of protein structures and complexes. Nucleic Acids Res. 46, 296‒303.

    Article  Google Scholar 

  22. Binder J.X., Pletscher-Frankild S., Tsafou K., Stolte C., O’Donoghue S.I., Schneider R., Jensen L.J. 2014. COMPARTMENTS: Unification and visualization of protein subcellular localization evidence. Database (Oxford). 2014, bau012. https://doi.org/10.1093/database/bau012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Sigalotti L., Fratta E., Coral S., Tanzarella S., Danielli R., Colizzi F., Fonsatti E., Traversari C., Altomonte M., Maio M. 2004. Intratumor heterogeneity of cancer/testis antigens expression in human cutaneous melanoma is methylationregulated and functionally reverted by 5-aza-20-deoxycytidine. Cancer Res. 64, 9167‒9171.

    Article  CAS  Google Scholar 

  24. Bestor T.H. 2000. The DNA methyltransferases of mammals. Hum. Mol. Genet.9 (16), 2395‒2402.

    Article  CAS  Google Scholar 

  25. Robertson K.D. 2002. DNA methylation and chromatin unraveling the tangled web. Oncogene. 35, 5361–5379.

    Article  Google Scholar 

  26. Kohli R.M., Zhang Y. 2013. TET enzymes, TDG and the dynamics of DNA demethylation. Nature. 502 (7472), 472‒479.

    Article  CAS  Google Scholar 

  27. Zemach A., McDaniel I.E., Silva P., Zilberman D. 2010. Genome-wide evolutionary analysis of eukaryotic DNA methylation. Science. 328 (5980), 916‒919.

    Article  CAS  Google Scholar 

  28. Wade P.A. 2001. Methyl CpG binding proteins: Coupling chromatin architecture to gene regulation. Oncogene. 20, 3166‒3173.

    Article  CAS  Google Scholar 

  29. De Smet C., Lurquin C., Lethe B., Martelange V., Boon T. 1999. DNA methylation is the primary silencing mechanism for a set of germ line- and tumor-specific genes with a CpG-rich promoter. Mol. Cell Biol. 19, 7327‒7335.

    Article  CAS  Google Scholar 

  30. Sigalotti L., Coral S., Nardi G. et al. 2002. Promoter methylation controls the expression of MAGE2, 3 and 4 genes inhumancutaneous melanoma. Int. J. Cancer. 25, 16‒26.

    CAS  Google Scholar 

  31. Brenner C., Deplus R., Didelot C., Loriot A., Viré E., De Smet C., Gutierrez A., Danovi D., Bernard D., Boon T., Pelicci P. G., Amati B., Kouzarides T., de Launoit Y., Di Croce L., Fuks F. 2005. Myc represses transcription through recruitment of DNA methyltransferase corepressor. EMBO J.24 (2), 336‒346.

    Article  CAS  Google Scholar 

  32. Jia Y., Li P., Fang L., Zhu H., Xu L., Cheng H., Zhang J., Li F., Feng Y., Li Y., Li J., Wang R., Du J.X., Li J., Chen T., et al. 2016. Negative regulation of DNMT3A de novo DNA methylation by frequently overexpressed UHRF family proteins as a mechanism for widespread DNA hypomethylation in cancer. Cell Discov. 2, 16007.

    Article  CAS  Google Scholar 

  33. Rhee I., Jair K.W., Yen R.W., Lengauer C., Herman J.G., Kinzler K.W., Vogelstein B., Baylin S.B., Schuebel K.E. 2000. CpG methylation is maintained in human cancer cells lacking DNMT1. Nature. 404 (6781), 1003‒1007

    Article  CAS  Google Scholar 

  34. Pradhan S., Bacolla A., Wells R.D., Roberts R.J. 1999. Recombinant human DNA (cytosine-5. methyltransferase): 1. Expression, purification, and comparison of de novo and maintenance methylation. J. Biol. Chem.274 (46), 33002‒33010.

    Article  CAS  Google Scholar 

  35. Vasilyev S.A., Tolmacheva E.N., Lebedev I.N. 2016. Epigenetic regulation and role of LINE-1 retrotransposon in embryogenesis. Russ. J. Genet.52 (12), 1219‒1226.

    Article  CAS  Google Scholar 

  36. Mustafin R.N., Khusnutdinova E.K. 2017. Epigenetics of carcinogenesis. Kreat. Khirurg. Onkol.7 (3), 60‒67.

    Article  Google Scholar 

Download references

Funding

This work was financially supported by the Ministry of Health of the Russian Federation within the State Task “A study of aberrant regulation of the transcriptional activity of a gene pattern in the development of the malignant transformation of tissues of various nosologies” (project no. AAAA-A18-118072790013-1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. S. Kutilin.

Ethics declarations

Conflict of interests. The authors declare that they have no conflict of interest.

Statement of compliance with standards of research involving humans as subjects. All procedures performed in the present study were in accordance with the ethical standards of the institutional research ethics committee and with the 1964 Helsinki Declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants involved in the study.

Additional information

Translated by D. Novikova

Abbreviations: CRC, colorectal cancer; CNV, copy number variation; CTA, cancer/testis antigens; FC, fold change.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kutilin, D.S. Regulation of Gene Expression of Cancer/Testis Antigens in Colorectal Cancer Patients. Mol Biol 54, 520–534 (2020). https://doi.org/10.1134/S0026893320040093

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320040093

Keywords:

Navigation