Skip to main content
Log in

In vitro and in silico Determination of the Interaction of Artemisinin with Human Serum Albumin

  • STRUCTURAL-FUNCTIONAL ANALYSIS OF BIOPOLYMERS AND THEIR COMPLEXES
  • Published:
Molecular Biology Aims and scope Submit manuscript

Abstract

Artemisinins are secondary metabolites of the medicinal plant Artemisia annua, have anti-inflammatory, anticarcinogenic, immunomodulating, antimicrobial and other properties. However, the pharmacokinetics, pharmacodynamics, exact molecular targets of artemisinin are not well known. The interaction of artemisinin with human serum albumin was studied both in vitro and in silico, and compared with dexamethasone. The quenching of the fluorescence emission of human serum albumin with artemisinin at different temperatures proceeded according to a single mechanism and indicated the static nature, which is similar to the effect of dexamethasone. Artemisinin and dexamethasone interact with Drug site I on human serum albumin. We have shown for the first time the formation of hydrogen bond with Arg218, which plays a crucial role in the binding of drugs at site I. Dexamethasone forms hydrogen bonds with the side chain of Arg218 and Arg222 and the main chain of Val343. The amino acids of subdomains IIA and IIIA of human serum albumin coincide for both compounds. Studies of the electrophoretic mobility of DNA of sarcoma S-180 cells show that artemisinin does not interact directly with DNA. Therefore, we assume that one of the main transporters of artemisinin is human serum albumin. Moreover, the interaction parameters of artemisinin with human serum albumin coincide with those of dexamethasone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.

Similar content being viewed by others

REFERENCES

  1. Krishna S., Bustamante L., Haynes R.K., Staines H.M. 2008. Artemisinins: Their growing importance in medicine. Trends Pharmacol. Sci.29, 520–527. https://doi.org/10.1016/j.tips.2008.07.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Ali M., Abbasi B.H., Ahmad N., Khan H., Ali G.S. 2017. Strategies to enhance biologically active-secondary metabolites in cell cultures of Artemisia: Current trends. Crit. Rev. Biotechnol.37, 833–851. https://doi.org/10.1080/07388551.2016.1261082

    Article  CAS  PubMed  Google Scholar 

  3. Yao W., Wang F., Wang H. 2016. Immunomodulation of artemisinin and its derivatives. Sci. Bull.61, 1399–1406. https://doi.org/10.1007/s11434-016-1105-z

    Article  CAS  Google Scholar 

  4. Lisgarten J.N., Potter B.S., Bantuzeko C., Palmer R.A. 1998. Structure, absolute configuration, and conformation of the antimalarial compound, Artemisinin. J. Chem. Crystallogr.28, 539–543. https://doi.org/10.1023/A:1023244122450

    Article  CAS  Google Scholar 

  5. O’Neill P.M., Barton V.E., Ward S.A. 2010. The molecular mechanism of action of artemisinin: The debate continues. Molecules.15, 1705–1721. https://doi.org/10.3390/molecules15031705

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Ho W.E., Peh H.Y., Chan T.K., Wong W.F. 2014. Artemisinins: Pharmacological actions beyond anti-malarial. Pharmacol. Ther.142, 126–139. https://doi.org/10.1016/j.pharmthera.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  7. Kim W.S., Choi W.J., Lee S., Kim W.J., Lee D.C., Sohn U.D., Shin H.S., Kim W. 2014. Anti-inflammatory, antioxidant and antimicrobial effects of artemisinin extracts from Artemisia annua L. Korean J. Physiol. Pharmacol.19, 21. https://doi.org/10.4196/kjpp.2015.19.1.21

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Bhaw-Luximon A., Jhurry D. 2017. Artemisinin and its derivatives in cancer therapy: Status of progress, mechanism of action, and future perspectives. Cancer Chemother. Pharmacol.79, 451–466. https://doi.org/10.1007/s00280-017-3251-7

    Article  CAS  PubMed  Google Scholar 

  9. Dai Y.F., Zhou W.W., Meng J., Du X.L., Sui Y.P., Dai L., Wang P.Q., Huo H.R., Sui F. 2017. The pharmacological activities and mechanisms of artemisinin and its derivatives: A systematic review. Med. Chem. Res.26, 867–880. https://doi.org/10.1007/s00044-016-1778-5

    Article  CAS  Google Scholar 

  10. Tu Y. 2011. The discovery of artemisinin (qinghaosu) and gifts from Chinese medicine. Nat. Med.17, 1217–1220. https://doi.org/10.1038/nm.2471

    Article  CAS  PubMed  Google Scholar 

  11. Crespo-Ortiz M.P., Wei M.Q. 2012. Antitumor activity of artemisinin and its derivatives: From a well-known antimalarial agent to a potential anticancer drug. J. Biomed. Biotechnol.2012, 1–18. https://doi.org/10.1155/2012/247597

    Article  CAS  Google Scholar 

  12. Das A.K. 2015. Anticancer effect of antimalarial artemisinin compounds. Ann. Med. Health Sci. Res.5, 93. https://doi.org/10.4103/2141-9248.153609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Shi Z., Chen Y., Lu C., Dong L.M., Lv J.W., Tuo Q.H., Qin L., Cheng S.W., Bu L.L., Lin N., Zhu X.X., Liao D.F., Liu X.M. 2018. Resolving neuroinflammation, the therapeutic potential of the anti-malaria drug family of artemisinin. Pharmacol. Res.136, 172–180. https://doi.org/10.1016/j.phrs.2018.09.002

    Article  CAS  PubMed  Google Scholar 

  14. Appalasamy S., Lo K.Y., Ch’ng S.J., Nornadia K., Othman A.S., Chan L.K. 2014. Antimicrobial activity of artemisinin and precursor derived from in vitro plantlets of Artemisia annua L. BioMed Res. Int.2014, 1–6. https://doi.org/10.1155/2014/215872

    Article  CAS  Google Scholar 

  15. Li B., Yao Q., Pan X.C., Wang N., Zhang R., Li J., Ding G., Liu X., Wu C., Ran D., Zheng J., Zhou H. 2011. Artesunate enhances the antibacterial effect of β‑lactam antibiotics against Escherichia coli by increasing antibiotic accumulation via inhibition of the multidrug efflux pump system AcrAB-TolC. J. Antimicrob. Chemother.66, 769–777. https://doi.org/10.1093/jac/dkr017

    Article  CAS  PubMed  Google Scholar 

  16. Krungkrai J., Krungkrai S.R. 2016. Antimalarial qinghaosu/artemisinin: The therapy worthy of a Nobel prize. Asian Pac. J. Trop. Biomed.6, 371–375. https://doi.org/10.1016/j.apjtb.2016.03.010

    Article  Google Scholar 

  17. Ginosyan S.V., Grabski H.V., Tiratsuyan S.G. 2017. Insights on glucocorticoid receptor modulation through binding of artemisinin. Biol. J. Armen.69, 104–109

    Google Scholar 

  18. Weikum E.R., Knuesel M.T., Ortlund E.A., Yamamoto K.R. 2017. Glucocorticoid receptor control of transcription: Precision and plasticity via allostery. Nat. Rev. Mol. Cell Biol.18, 159–174. https://doi.org/10.1038/nrm.2016.152

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Bledsoe R.K., Montana V.G., Stanley T.B., Delves C.J., Apolito C.J., McKee D.D., Consler T.G., Parks D.J., Stewart E.L., Willson T.M., Lambert M.H., Moore J.T., Pearce K.H., Xu H.E. 2002. Crystal structure of the glucocorticoid receptor ligand binding domain reveals a novel mode of receptor dimerization and coactivator recognition. Cell.110, 93–105. https://doi.org/10.1016/S0092-8674(02)00817-6

    Article  CAS  PubMed  Google Scholar 

  20. Ratman D., Mylka V., Bougarne N., Pawlak M., Caron S., Hennuyer N., Paumelle R., Cauwer L.D., Thommis J., Rider M.H., Libert C., Lievens S., Tavernier J., Staels B., Bosscher K.D. 2016. Chromatin recruitment of activated AMPK drives fasting response genes co-controlled by GR and PPARα. Nucleic. Acids. Res.44, 10539–10553. https://doi.org/10.1093/nar/gkw742

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Sundahl N., Bridelance J., Libert C., Bosscher K.D., Beck I.M. 2015. Selective glucocorticoid receptor modulation: New directions with non-steroidal scaffolds. Pharmacol. Ther.152, 28–41. https://doi.org/10.1016/j.pharmthera.2015.05.001

    Article  CAS  PubMed  Google Scholar 

  22. Cruz-Topete D., Cidlowski J.A. 2015. One hormone, two actions: Anti- and pro-inflammatory effects of glucocorticoids. Neuroimmunomodulation.22, 20–32. https://doi.org/10.1159/000362724

    Article  CAS  PubMed  Google Scholar 

  23. Presman D.M., Hager G.L. 2017. More than meets the dimer: What is the quaternary structure of the glucocorticoid receptor? Transcription. 8, 32–39. https://doi.org/10.1080/21541264.2016.1249045

    Article  CAS  PubMed  Google Scholar 

  24. Conaway H.H., Henning P., Lie A., Tuckermann J., Lerner U.H. 2016. Activation of dimeric glucocorticoid receptors in osteoclast progenitors potentiates RANKL induced mature osteoclast bone resorbing activity. Bone.93, 43–54. https://doi.org/10.1016/j.bone.2016.08.024

    Article  CAS  PubMed  Google Scholar 

  25. Yasseen Z.J., El-Ghossain M.O. 2016. Studies on binding of widely used drugs with human serum albumin at different temperatures and pHs. J. Biomed. Sci.5. https://doi.org/10.4172/2254-609X.100033

  26. Chen R., Jiang H., Pu H. 2013. Interaction of artemisinin and its derivatives with human serum albumin studied using spectroscopies and molecular modeling methods. Mol. Biol. Rep.40, 4791–4804. https://doi.org/10.1007/s11033-013-2575-6

    Article  CAS  PubMed  Google Scholar 

  27. Marković O.S., Cvijetić I.N., Zlatović M.V., Opse-nica I.M., Konstantinović J.M., Jovanović N.V.T., Šolaja B.A., Verbić T.Ž. 2018. Human serum albumin binding of certain antimalarials. Spectrochim. Acta A: Mol. Biomol. Spectrosc.192, 128–139. https://doi.org/10.1016/j.saa.2017.10.061

    Article  CAS  Google Scholar 

  28. Hananta L., Astuti I., Sadewa A.H., Alice J., Hutagalung J. 2018. The prevalence of CYP2B6 gene polymorphisms in malaria-endemic population of Timor in East Nusa Tenggara, Indonesia. Osong Public Health Res. Perspect.9, 192–196. https://doi.org/10.24171/j.phrp.2018.9.4.08

    Article  PubMed  PubMed Central  Google Scholar 

  29. Maciążek-Jurczyk M., Szkudlarek A., Chudzik M., Pożycka J., Sułkowska A. 2018. Alteration of human serum albumin binding properties induced by modifications: A review. Spectrochim. Acta A: Mol. Biomol. Spectrosc.188, 675–683. https://doi.org/10.1016/j.saa.2017.05.023

    Article  CAS  Google Scholar 

  30. Sudlow G., Birkett D.J., Wade D.N. 1976. Further characterization of specific drug binding sites on human serum albumin. Mol. Pharmacol.12, 1052–1061

    CAS  PubMed  Google Scholar 

  31. Lakowicz J.R. 2006. Principles of Fluorescence Spectroscopy. Boston, MA: Springer.

    Book  Google Scholar 

  32. Lemkul J. 2019. From proteins to perturbed hamiltonians: A suite of tutorials for the GROMACS-2018 molecular simulation package [Article v1.0]. Living J. Comput. Mol. Sci.1. https://doi.org/10.33011/livecoms.1.1.5068

  33. Pagadala N.S., Syed K., Tuszynski J. 2017. Software for molecular docking: A review. Biophys. Rev.9, 91–102. https://doi.org/10.1007/s12551-016-0247-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao H., Ge M., Zhang Z., Wang W., Wu G. 2006. Spectroscopic studies on the interaction between riboflavin and albumins. Spectrochim. Acta A: Mol. Biomol. Spectrosc.65, 811–817. https://doi.org/10.1016/j.saa.2005.12.038

    Article  CAS  Google Scholar 

  35. Lissi E., Calderón C., Campos A. 2013. Evaluation of the number of binding sites in proteins from their intrinsic fluorescence: limitations and pitfalls. Photochem. Photobiol.89, 1413–1416. https://doi.org/10.1111/php.12112

    Article  CAS  PubMed  Google Scholar 

  36. Mahammed A., Gray H.B., Weaver J.J., Sorasaenee K., Gross Z. 2004. Amphiphilic corroles bind tightly to human serum albumin. Bioconjug. Chem.15, 738–746. https://doi.org/10.1021/bc034179p

    Article  CAS  PubMed  Google Scholar 

  37. Wang Y.Q., Su J., Wu F., Lu P., Yuan L.F., Yuan W.E., Sheng J., Jin T. 2012. Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low cytotoxicity, and high efficiency for gene delivery. Int. J. Nanomed.7, 693–704. https://doi.org/10.2147/IJN.S27849

    Article  CAS  Google Scholar 

  38. Berman H.M. 2000. The protein data bank. Nucleic Acids Res.28, 235–242. https://doi.org/10.1093/nar/28.1.235

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Petitpas I., Bhattacharya A.A., Twine S., East M., Curry S. 2001. Crystal structure analysis of warfarin binding to human serum albumin anatomy of drug site I. J. Biol. Chem.276, 22804–22809. https://doi.org/10.1074/jbc.M100575200

    Article  CAS  PubMed  Google Scholar 

  40. Webb B., Sali A. 2014. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinformatics.47, 5.6.1–5.6.32. https://doi.org/10.1002/0471250953.bi0506s47

  41. Lindorff-Larsen K., Piana S., Palmo K., Maragakis P., Klepeis J.L., Dror R.O., Shaw D.E. 2010. Improved side-chain torsion potentials for the Amber ff99SB protein force field. Proteins.78, 1950–1958. https://doi.org/10.1002/prot.22711

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Jorgensen W.L., Chandrasekhar J., Madura J.D., Impey R.W., Klein M.L. 1983. Comparison of simple potential functions for simulating liquid water. J. Chem. Phys.79, 926–935. https://doi.org/10.1063/1.445869

    Article  CAS  Google Scholar 

  43. Daura X., Gademann K., Jaun B., Seebach D., Van Gunsteren W.F., Mark A.E. 1999. Peptide folding: When simulation meets experiment. Angew. Chem. Int. Ed.38, 236–240. https://doi.org/10.1002/(SICI)1521-3773(19990115)38:1/2<236::AID-ANIE236>3.0.CO;2-M

    Article  CAS  Google Scholar 

  44. Offutt T.L., Swift R.V., Amaro R.E. 2016. Enhancing virtual screening performance of protein kinases with molecular dynamics simulations. J. Chem. Inf. Model.56, 1923–1935. https://doi.org/10.1021/acs.jcim.6b00261

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Sadovnichy V., Tikhonravov A., Voevodin V., Opanasenko V. 2017. “Lomonosov”: Supercomputing at Moscow State University. In Contemporary High Performance Computing. New York: Chapman and Hall/CRC, pp. 283–307.

    Google Scholar 

  46. Bolton E.E., Wang Y., Thiessen P.A., Bryant S.H. 2008. PubChem: Integrated platform of small molecules and biological activities. In Annual Reports in Computational Chemistry. Elsevier, vol. 4, pp. 217–241.

    Google Scholar 

  47. Da Silva A.W.S., Vranken W.F. 2012. ACPYPE: Antechamber python parser interface. BMC Res. Notes. 5, 367. https://doi.org/10.1186/1756-0500-5-367

    Article  Google Scholar 

  48. Wang J., Wolf R.M., Caldwell J.W., Kollman P.A., Case D.A. 2004. Development and testing of a general amber force field. J. Comput. Chem.25, 1157–1174. .https://doi.org/10.1002/jcc.20035

    Article  CAS  PubMed  Google Scholar 

  49. Trott O., Olson A.J. 2010. AutoDock Vina: Improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. J. Comput. Chem.31, 455–461. https://doi.org/10.1002/jcc.21334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Ruiz-Carmona S., Alvarez-Garcia D., Foloppe N., Garmendia-Doval A.B., Juhos S., Schmidtke P., Barril X., Hubbard R.E., Morley S.D. 2014. rDock: A fast, versatile and open source program for docking ligands to proteins and nucleic acids. PLoS Comput. Biol.10, e1003571. https://doi.org/10.1371/journal.pcbi.1003571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Wang Z., Sun H., Yao X., Li D., Xu L., Li Y., Tian S., Hou T. 2016. Comprehensive evaluation of ten docking programs on a diverse set of protein–ligand complexes: the prediction accuracy of sampling power and scoring power. Phys. Chem. Chem. Phys.18, 12964–12975. https://doi.org/10.1039/C6CP01555G

    Article  CAS  PubMed  Google Scholar 

  52. Gaudreault F., Najmanovich R.J. 2015. FlexAID: Revisiting docking on non-native-complex structures. J. Chem. Inf. Model.55, 1323–1336. https://doi.org/10.1021/acs.jcim.5b00078

    Article  CAS  PubMed  Google Scholar 

  53. Hotelling H. 1933. Analysis of a complex of statistical variables into principal components. J. Educ. Psychol.24, 417–441. https://doi.org/10.1037/h0071325

    Article  Google Scholar 

  54. Rehman S.U., Asghar S., Fong S., Sarasvady S. 2014. DBSCAN: Past, present and future. IEEE. 232–238.

  55. Grabski H., Tiratsuyan S. 2018. Mechanistic insights of the attenuation of quorum-sensing-dependent virulence factors of Pseudomonas aeruginosa: molecular modeling of the interaction of taxifolin with transcriptional regulator LasR. bioRxiv, 500157.

  56. McKinney W. 2011. pandas: A foundational Python library for data analysis and statistics. Python High Perform. Sci. Comput.14.

  57. Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., Vanderplas J., Passos A., Cournapeau D., Brucher M., Perrot M., Duchesnay E. 2011. Scikit-learn: Machine learning in Python. J. Machine Learn. Res.12, 2825–2830.

    Google Scholar 

  58. O’Boyle N.M., Banck M., James C.A., Morley C., Vandermeersch T., Hutchison G.R. 2011. Open Babel: An open chemical toolbox. J. Cheminform.3. https://doi.org/10.1186/1758-2946-3-33

  59. Wallace A.C., Laskowski R.A., Thornton J.M. 1995. LIGPLOT: A program to generate schematic diagrams of protein–ligand interactions. Protein Eng. Des. Sel.8, 127–134. https://doi.org/10.1093/protein/8.2.127

    Article  CAS  Google Scholar 

  60. Peters T. 1996. All about Albumin: Biochemistry, Genetics, and Medical Applications. San Diego, CA: Academic Press.

    Google Scholar 

  61. Fanali G., Di Masi A., Trezza V., Marino M., Fasano M., Ascenzi P. 2012. Human serum albumin: From bench to bedside. Mol. Aspects Med.33, 209–290. https://doi.org/10.1016/j.mam.2011.12.002

    Article  CAS  PubMed  Google Scholar 

  62. Ma R., Guo D.X., Li H.F., Liu H.X., Zhang Y.R., Ji J.B., Xing J., Wang S.Q. 2019. Spectroscopic methodologies and molecular docking studies on the interaction of antimalarial drug piperaquine and its metabolites with human serum albumin. Spectrochim. Acta A: Mol. Biomol. Spectrosc.222, 117158. https://doi.org/10.1016/j.saa.2019.117158

    Article  CAS  Google Scholar 

  63. Ross P.D., Subramanian S. 1981. Thermodynamics of protein association reactions: forces contributing to stability. Biochemistry.20, 3096–3102. https://doi.org/10.1021/bi00514a017

    Article  CAS  PubMed  Google Scholar 

  64. Naik P.N., Chimatadar S.A., Nandibewoor S.T. 2010. Interaction between a potent corticosteroid drug— dexamethasone with bovine serum albumin and human serum albumin: A fluorescence quenching and fourier transformation infrared spectroscopy study. J. Photochem. Photobiol. B. Biol.100, 147–159. https://doi.org/10.1016/j.jphotobiol.2010.05.014

    Article  CAS  Google Scholar 

  65. Förster T. 1948. Energy transfer and fluorescence between molecules. Ann Phys.437, 55–75.

    Article  Google Scholar 

  66. Valeur B., Brochon J.C. 2001. New Trends in Fluorescence Spectroscopy: Applications to Chemical and Life Sciences. Berlin: Springer.

    Book  Google Scholar 

  67. Foresman J.B., Frisch A. 1996. Exploring Chemistry with Electronic Structure Methods. Sec. Ed. Pittsburgh, PA: Gaussian, Inc.

  68. Wang Y.Q., Su J., Wu F., Lu P., Yuan L.F., Yuan W.E., Sheng J., Jin T. 2012. Biscarbamate cross-linked polyethylenimine derivative with low molecular weight, low cytotoxicity, and high efficiency for gene delivery. Int. J. Nanomed.7, 693–704. https://doi.org/10.2147/IJN.S27849

    Article  CAS  Google Scholar 

  69. Cai H.H., Yang P.H., Chen J., Liang Z.H., Chen Q., Cai J. 2009. Visual characterization and quantitative measurement of artemisinin-induced DNA breakage. Electrochim. Acta.54, 3651–3656. https://doi.org/10.1016/j.electacta.2009.01.042

    Article  CAS  Google Scholar 

  70. Navaratnam V., Mansor S.M., Sit N.W., Grace J., Li Q., Olliaro P. 2000. Pharmacokinetics of artemisinin-type compounds. Clin. Pharmacokinet.39, 255–270. https://doi.org/10.2165/00003088-200039040-00002

    Article  CAS  PubMed  Google Scholar 

  71. Kimzey M.J., Yassine H.N., Riepel B.M., Tsaprailis G., Monks T.J., Lau S.S. 2011. New site (s. of methylglyoxal-modified human serum albumin, identified by multiple reaction monitoring, alter warfarin binding and prostaglandin metabolism. Chem. Biol. Interact.192, 122–128. https://doi.org/10.1016/j.cbi.2010.09.032

    Article  CAS  PubMed  Google Scholar 

  72. Mimoto M.S., Karaca A., Scherberg N., Dumitrescu A.M., Refetoff S. 2018. Homozygous mutation in human serum albumin and its implication on thyroid tests. Thyroid.28, 811–814. https://doi.org/10.1089/thy.2017.0564

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Ha J.S., Ha C.E., Chao J.T., Petersen C.E., Theriault A., Bhagavan N.V. 2003. Human serum albumin and its structural variants mediate cholesterol efflux from cultured endothelial cells. Biochim. Biophys. Acta: Mol. Cell. Res.1640, 119–128. https://doi.org/10.1016/S0167-4889(03)00027-2

    Article  CAS  Google Scholar 

Download references

ACKNOWLEDGMENTS

Authors are thankful to the Laboratory of Toxinology and Molecular Systematics of L. A. Orbeli Institute of Phy-siology NAS RA.

The research is carried out using the equipment of the shared research facilities of HPC computing resources at Lomonosov Moscow State University.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ginosyan.

Ethics declarations

The authors declare that they have no conflict of interest.

This article does not contain any research involving humans or animals as subjects of research.

Additional information

Abbreviations: ART, artemisinin; hGR, human glucocorticoid receptor; DEXA, dexamethasone; HSA, human serum albumin; MD, molecular dynamics.

Supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ginosyan, S., Grabski, H. & Tiratsuyan, S. In vitro and in silico Determination of the Interaction of Artemisinin with Human Serum Albumin. Mol Biol 54, 586–598 (2020). https://doi.org/10.1134/S0026893320040056

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0026893320040056

Keywords:

Navigation