Skip to main content
Log in

On a Generalization of the Hermite–Hadamard Inequality and Applications in Convex Geometry

  • Published:
Mediterranean Journal of Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we show the following result: if C is an n-dimensional 0-symmetric convex compact set, \(f:C\rightarrow [0,\infty )\) is concave, and \(\phi :[0,\infty )\rightarrow [0,\infty )\) is not identically zero, convex, with \(\phi (0)=0\), then

$$\begin{aligned} \frac{1}{|C|}\int _C\phi (f(x)){\text {d}}x\le \frac{1}{2}\int _{-1}^1\phi (f(0)(1+t)){\text {d}}t, \end{aligned}$$

where |C| denotes the volume of C. If \(\phi \) is strictly convex, equality holds if and only if f is affine, C is a generalized symmetric cylinder and f becomes 0 at one of the basis of C. We exploit this inequality to answer a question of Francisco Santos on estimating the volume of a convex set by means of the volume of a central section of it. Second, we also derive a corresponding estimate for log-concave functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. Bedlewo, Poland 2017 http://bcc.impan.pl/17Convex/.

References

  1. Alonso-Gutiérrez, D., Artstein-Avidan, S., González Merino, B., Jiménez, C.H., Villa, R.: Rogers–Shephard and local Loomis–Whitney type inequalities. Math. Ann. 374(3–4), 1719–1771 (2019)

    Article  MathSciNet  Google Scholar 

  2. Alonso-Gutiérrez, D., Bernués, J., González Merino, B.: An extension of Berwald’s inequality and its relation to Zhang’s inequality. J. Math. Anal. Appl. 486, 1 (2020)

    Article  MathSciNet  Google Scholar 

  3. Berwald, L.: Verallgemeinerung eines Mittelwertsatzes von J. Favard für positive konkave Funktionen (German). Acta Math. 79, 17–37 (1947)

    Article  MathSciNet  Google Scholar 

  4. Borell, C.: Complements of Lyapunov’s inequality. Math. Ann. 205, 323–331 (1973)

    Article  MathSciNet  Google Scholar 

  5. de la Cal, J., Cárcamo, J.: Multidimensional Hermite–Hadamard inequalities and the convex order. J. Math. Anal. Appl. 324, 248–261 (2006)

    Article  MathSciNet  Google Scholar 

  6. Dragomir, S.S., Pearce, C.E.M.: Selected topics on Hermite–Hadamard inequality and applications. Victoria University, Melbourne (2000)

    Google Scholar 

  7. Fradelizi, M.: Sections of convex bodies through their centroid. Arch. Math. 69, 515–522 (1997)

    Article  MathSciNet  Google Scholar 

  8. Gardner, R.: The Brunn–Minkowski inequality. Bull. Am. Math. Soc. 39(3), 355–405 (2002)

    Article  MathSciNet  Google Scholar 

  9. Giannopoulos, A.: Convex Geometric Analysis. Department of Mathematics, University of Crete, Heraklion, Seminar Notes (2002)

  10. Gruber, P.M.: Convex and discrete geometry, Grundlehren der Mathematischen Wissenschaften, vol. 336. Springer, Berlin (2007)

    Google Scholar 

  11. Guedon, O., Nayar, P., Tkocz, T.: Concentration inequalities and geometry of convex bodies. IMPAN Lecture Notes 2, 9–86 (2014)

    MathSciNet  MATH  Google Scholar 

  12. Hardy, G., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1934)

    MATH  Google Scholar 

  13. Iglesias Valiño, O., Santos, F.: The complete classification of empty lattice 4-simplices. arXiv:1908.08933 (2019)

  14. Jensen, J.L.W.V.: Sur les fonctions convexes et les inégalités entre les valeurs moyennes. Acta Math. 30(1), 175–193 (1906)

    Article  MathSciNet  Google Scholar 

  15. Makai Jr., E., Martini, H.: The cross-section body, plane sections of convex bodies and approximation of convex bodies. I. Geom. Dedicata. 63, 267–296 (1996)

    Article  MathSciNet  Google Scholar 

  16. Melas, A.D.: The best constant for the centered Hardy–Littlewood maximal inequality. Ann. Math. 157, 647–688 (2003)

    Article  MathSciNet  Google Scholar 

  17. Milman, V.D., Pajor, A.: Entropy and asymptotic geometry of non-symmetric convex bodies. Adv. Math. 152(2), 314–335 (2000)

    Article  MathSciNet  Google Scholar 

  18. Milman, V.D., Pajor, A.: Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed-dimensional space, Geometric aspects of functional analysis (1987–88), 64–104, Lecture Notes in Math., 1376, Springer, Berlin, (1989)

  19. Schneider, R.: Convex Bodies: the Brunn–Minkowski Theory, 2nd edn. Cambridge University Press, Cambridge (2014)

    MATH  Google Scholar 

  20. Spingarn, J.E.: An inequality for sections and projections of a convex set. Proc. Am. Math. Soc. 118, 1219–1224 (1993)

    Article  MathSciNet  Google Scholar 

  21. Steinerberger, S.: The Hermite-Hadamard inequality in higher dimensions. J. Geom. Anal. 1–18, (2018)

  22. Stephen, M., Yaskin, V.: Applications of Grünbaum-type inequalities, to appear in Trans. Amer. Math. Soc., (2019)

Download references

Acknowledgements

I would like to thank David Alonso-Gutiérrez, Matthieu Fradelizi, Sasha Litvak, Kasia Wyczesany, Rafael Villa, and Vlad Yaskin for useful remarks and discussions, and Francisco Santos for sharing the question that motivated this article. I would also like to thank the invaluable comments and corrections of the anonymous referee that enormously improved the presentation of this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bernardo González Merino.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This research is a result of the activity developed within the framework of the Programme in Support of Excellence Groups of the Región de Murcia, Spain, by Fundación Séneca, Science and Technology Agency of the Región de Murcia. Partially supported by Fundación Séneca project 19901/GERM/15, Spain, and by MICINN Project PGC2018-094215-B-I00 Spain.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

González Merino, B. On a Generalization of the Hermite–Hadamard Inequality and Applications in Convex Geometry. Mediterr. J. Math. 17, 146 (2020). https://doi.org/10.1007/s00009-020-01587-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00009-020-01587-3

Mathematics Subject Classification

Navigation