Skip to main content
Log in

Gödel spacetime, planar geodesics and the Möbius map

  • Research Article
  • Published:
General Relativity and Gravitation Aims and scope Submit manuscript

Abstract

Timelike geodesics on a hyperplane orthogonal to the symmetry axis of the Gödel spacetime appear to be elliptic-like if standard coordinates naturally adapted to the cylindrical symmetry are used. The orbit can then be suitably described through an eccentricity-semi-latus rectum parametrization, familiar from the Newtonian dynamics of a two-body system. However, changing coordinates such planar geodesics all become explicitly circular, as exhibited by Kundt’s form of the Gödel metric. We derive here a one-to-one correspondence between the constants of the motion along these geodesics as well as between the parameter spaces of elliptic-like versus circular geodesics. We also show how to connect the two equivalent descriptions of particle motion by introducing a pair of complex coordinates in the 2-planes orthogonal to the symmetry axis, which brings the metric into a form which is invariant under Möbius transformations preserving the symmetries of the orbit, i.e., taking circles to circles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Gödel, K.: An Example of a new type of cosmological solutions of Einstein’s field equations of gravitation. Rev. Mod. Phys. 21, 447 (1949). https://doi.org/10.1103/RevModPhys.21.447

    Article  ADS  MathSciNet  MATH  Google Scholar 

  2. Kundt, W.: Trägheitsbahnen in einem von Gödel angegebenen kosmologischen Modell. Z. Phys. 145, 611 (1956)

    Article  ADS  Google Scholar 

  3. Chandrasekhar, S., Wright, J.P.: The Geodesics in Gödel’s Universe. Proc. Nat. Acad. Sci. United States Am. 47, 341 (1961)

    Article  ADS  Google Scholar 

  4. Novello, M., Svaiter, N.F., Guimaraes, M.E.X.: Synchronized frames for Godel’s universe”. Gen. Relativ. Gravit. 25, 137 (1993). https://doi.org/10.1007/BF00758823

    Article  ADS  MATH  Google Scholar 

  5. Obukhov, Y.N.: On physical foundations and observational effects of cosmic rotation, Published in Colloquium on Cosmic Rotation: Proceedings. Edited by Scherfner, M., Chrobok, T., Shefaat, M. (Wissenschaft und Technik Verlag: Berlin, 2000) pp. 23–96 [astro-ph/0008106]

  6. Grave, F., Buser, M., Muller, T., Wunner, G., Schleich, W.P.: The Gödel universe: Exact geometrical optics and analytical investigations on motion”. Phys. Rev. D 80, 103002 (2009). https://doi.org/10.1103/PhysRevD.80.103002

    Article  ADS  MathSciNet  Google Scholar 

  7. D. Bini, A. Geralico and R. T. Jantzen, Separable geodesic action slicing in stationary spacetimes,” Gen. Rel. Grav. 44, 603 (2012). https://doi.org/10.1007/s10714-011-1295-2[arXiv:1408.5259 [gr-qc]]

  8. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Spacetime. Cambridge University Press, Cambridge, UK (1973)

    Book  Google Scholar 

  9. Novello, M., Soares, I.D., Tiomno, J.: Geodesic Motion And Confinement In Gödel’s Universe. Phys. Rev. D 27, 779 (1983). https://doi.org/10.1103/PhysRevD.27.779

    Article  ADS  MathSciNet  Google Scholar 

  10. Bini, D., Geralico, A., Jantzen, R.T., Plastino, W.: Gödel spacetime: Planar geodesics and gyroscope precession, Phys. Rev. D 100, no. 8, 084051 (2019). https://doi.org/10.1103/PhysRevD.100.084051[arXiv:1905.04917 [gr-qc]]

  11. Oblak, B.: From the Lorentz Group to the Celestial Sphere, arXiv:1508.00920 [math-ph]

  12. Bengtsson, I.: Spherical symmetry and black holes, http://3dhouse.se/ingemar/sfar.pdf

  13. Reboucas, M.J., Tiomno, J.: On the homogeneity of riemannian space-times of godel type. Phys. Rev. D 28, 1251–1264 (1983). https://doi.org/10.1103/PhysRevD.28.1251

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Barrow, J.D., Dabrowski, M.P.: Godel universes in string theory, Phys. Rev. D 58, 103502 (1998) https://doi.org/10.1103/PhysRevD.58.103502[arXiv:gr-qc/9803048 [gr-qc]]

  15. Gleiser, R.J., Gurses, M., Karasu, A., Sarioglu, O.: Closed timelike curves and geodesics of Gödel-type metrics. Class. Quant. Grav. 23, 2653 (2006). https://doi.org/10.1088/0264-9381/23/7/025

  16. Calvao, M.O., Soares, I.D., Tiomno, J.: Geodesics in Gödel-type space-times. Gen. Relativ. Gravit. 22, 683 (1990). https://doi.org/10.1007/BF00755988

    Article  ADS  MATH  Google Scholar 

  17. Silk, J.: Local Irregularities in a Godel Universe. Astrophys. J. 143, 689 (1966). https://doi.org/10.1086/148551

    Article  ADS  MathSciNet  Google Scholar 

  18. Silk, J.: The instability of a rotating universe. Mon. Not. R. Astron. Soc. 147, 13 (1970). https://doi.org/10.1093/mnras/147.1.13

    Article  ADS  Google Scholar 

  19. Barrow, J.D., Tsagas, C.G.: Dynamics and stability of the Godel universe. Class. Quant. Grav. 21, 1773–1790 (2004). https://doi.org/10.1088/0264-9381/21/7/005. [arXiv:gr-qc/0308067 [gr-qc]]

    Article  ADS  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrea Geralico.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bini, D., Geralico, A., Jantzen, R.T. et al. Gödel spacetime, planar geodesics and the Möbius map. Gen Relativ Gravit 52, 73 (2020). https://doi.org/10.1007/s10714-020-02731-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10714-020-02731-w

Keywords

Navigation