Skip to main content

Advertisement

Log in

Numerical Simulations of Turbulent Flame Propagation in a Fan-Stirred Combustion Bomb and Bunsen-Burner at Elevated Pressure

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

Large eddy simulations (LES) have been carried out to calculate turbulent flame propagation in a fan-stirred combustion bomb and a Bunsen-type burner. Objective of the work is to reveal the main mechanism of increased flame wrinkling due to elevated pressure and to assess the ability of the turbulent flame-speed closure (TFC-class) combustion model to reproduce the enhancement of flame wrinkling or burning rate at elevated pressures. The simulations have been performed for a premixed methane/air mixture at equivalence ratio 0.9 and the pressure has been varied from 1 bar to 5 bar. The turbulent kinetic energy is found to increase with pressure in the high frequency range, indicating reinforced small-scale turbulent fluctuations at elevated pressure. The reason is attributed to the increased turbulent Reynolds number with pressure, which shifts the turbulent energy spectra to the higher wave number range. A reinforced flame wrinkling and an increased total burning rate are obtained at elevated pressure, which is in accordance with results from previous high-pressure combustion experiments. In addition, applying the same method to a quiescent flow in the bomb vessel reveals a decrease of the overall burning rate with pressure, which agrees with the behaviour of laminar flame speed at elevated pressures. Therefore, the beneficial effect of increased burning rate or flame wrinkling at elevated pressure can be explained by the enhanced small-scale turbulent fluctuations along with formation of small-scale vortices and flame structures, which over-compensate the reduced local laminar burning velocity at high pressures. The calculated amplification rates of flame wrinkling factor at increased pressures show a reasonable agreement with measured data for both fan-stirred bomb and Bunsen flame configurations, without using any additional adjusting parameters for considering the pressure effect. The results justify the applicability of the current TFC-LES method for high-pressure combustion processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

This figure is taken from Kobayashi (2002)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Bradley, D., Hicks, R.A., Lawes, M., Sheppard, C.G.W., Woolley, R.: The measurement of laminar burning velocities and markstein numbers for iso-octane–air and iso-octanen–heptane–air mixtures at elevated temperatures and pressures in an explosion bomb. Combust. Flame 115(1–2), 126–144 (1998)

    Google Scholar 

  • Bradley, D., Lawes, M., Liu, K., Verhelst, S., Woolley, R.: Laminar burning velocities of lean hydrogenair mixtures at pressures up to 1.0 MPa. Combust. Flame 149(1–2), 162–172 (2007)

    Google Scholar 

  • Bradley, D., Lawes, M., Mansour, M.S.: Explosion bomb measurements of ethanol-air laminar gaseous flame characteristics at pressures up to 1.4 MPa. Combust. Flame 156(7), 1462–1470 (2009)

    Google Scholar 

  • Bradley, D., Lawes, M., Mansour, M.: Correlation of turbulent burning velocities of ethanolair, measured in a fan-stirred bomb up to 1.2 MPa. Combust. Flame 158(1), 123–138 (2011)

    Google Scholar 

  • Chaudhuri, S., Akkerman, V., Law, C.K.: Spectral formulation of turbulent flame speed with consideration of hydrodynamic instability. Phys. Rev. E 84(2), 026322 (2011)

    Google Scholar 

  • Chaudhuri, S., Wu, F., Zhu, D., Law, C.K.: Flame speed and self-similar propagation of expanding turbulent premixed flames. Phys. Rev. Lett. 108(4), 044503 (2012)

    Google Scholar 

  • Chaudhuri, S., Saha, A., Law, C.K.: On flameturbulence interaction in constant-pressure expanding flames. Proc. Combust. Inst 35(2), 1331–1339 (2015)

    Google Scholar 

  • Creta, F., Fogla, N., Matalon, M.: Turbulent propagation of premixed flames in the presence of Darrieus–Landau instability. Combust. Theory Model 15(2), 267–298 (2011)

    MATH  Google Scholar 

  • Dinkelacker, F., Hölzler, S., Leipertz, A.: Investigations with a turbulent flame-speed-closure model for premixed turbulent flame calculations. Combust. Sci. Technol. 158, 321–340 (2000)

    MATH  Google Scholar 

  • Dinkelacker, F., Manickam, B., Muppala, S.P.R.: Modelling and simulation of lean premixed turbulent methane/hydrogen/air flames with an effective Lewis number approach. Combust. Flame 158, 1742–1749 (2011)

    Google Scholar 

  • Ferziger, J.H., Perić, M.: Computational Methods for Fluid Dynamics. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  • Flohr, P., Pitsch, H.: A turbulent flame speed closure model for LES of industrial burner flows. In: Proceedings of the Summer Program, Stanford Summer Program, pp. 169–179 (2000)

  • Fragner, R., Halter, F., Mazellier, N., Chauveau, C., Gökalp, I.: Investigation of pressure effects on the small scale wrinkling of turbulent premixed Bunsen flames. Proc. Combust. Inst. 35(2), 1527–1535 (2015)

    Google Scholar 

  • Fröhlich, J.: Large Eddy Simulation turbulenter Strömungen. Teubner Verlag, Germany (2006)

    Google Scholar 

  • Goodwin, D., Moffat, H., Speth, R.: Cantera: an object-oriented software toolkit for chemical kinetics, thermodynamics, and transport processes. version 2.3.0b (2017). Software available at https://www.cantera.org

  • Hassan, M.I., Aung, K.T., Kwon, O.C., Faeth, G.M.: Properties of laminar premixed hydrocarbon/air flames at various pressures. J. Propul. Power 14(4), 479 (1998)

    Google Scholar 

  • Hu, E., Huang, Z., He, J., Zheng, J., Miao, H.: Measurements of laminar burning velocities and onset of cellular instabilities of methane–hydrogen–air flames at elevated pressures and temperatures. Int. J. Hydrog. Energy 34(3), 5574–5584 (2009)

    Google Scholar 

  • Ichikawa, A., Naito, Y., Hayakawa, A., Kudo, T., Kobayashi, H.: Burning velocity and flame structure of ch4/nh3/air turbulent premixed flames at high pressure. Int. J. Hydrog. Energy 44(13), 6991–6999 (2019)

    Google Scholar 

  • Jasak, H., Rusche, H.: Dynamic Mesh Handling in OpenFOAM (2009). http://web.student.chalmers.se/groups/ofw5/Advanced_Training/DynamicMesh.pdf

  • Jiang, L.J., Shy, S.S., Li, W.Y., Huang, H.M., Nguyen, M.T.: High-temperature, high-pressure burning velocities of expanding turbulent premixed flames and their comparison with Bunsen-type flames. Combust. Flame 172, 173–182 (2016)

    Google Scholar 

  • Kitagawa, T., Nakahara, T., Maruyama, K., Kado, K., Hayakawa, A., Kobayashi, S.: Turbulent burning velocity of hydrogen–air premixed propagating flames at elevated pressures. Int. J. Hydrog. Energy 33(20), 5842–5849 (2008)

    Google Scholar 

  • Klein, M., Sadiki, A., Janicka, J.: A digital filter based generation of inflow data for spatially developing direct numerical or large eddy simulations. J. Comput. Phys. 286, 652–665 (2003)

    MATH  Google Scholar 

  • Kobayashi, H.: Experimental study of high-pressure turbulent premixed flames. Exp. Therm. Fluid Sci. 26(2–4), 375–387 (2002)

    Google Scholar 

  • Kobayashi, H., Seyama, K., Hagiwara, H., Ogami, Y.: Burning velocity correlation of methane/air turbulent premixed flames at high pressure and high temperature. Proc. Combust. Inst. 30(1), 827–834 (2005)

    Google Scholar 

  • Lachaux, T., Halter, F., Chauveau, C., Gökalp, I., Shepherd, I.G.: Flame front analysis of high-pressure turbulent lean premixed methaneair flames. Proc. Combust. Inst. 30(1), 819–826 (2005)

    Google Scholar 

  • Lipatnikov, A.N., Chomiak, J.: Effects of premixed flames on turbulence and turbulent scalar transport. Prog. Energy Combust. 36(1), 1–102 (2010)

    Google Scholar 

  • Liu, C., Shy, S., Peng, M., Chiu, C., Dong, Y.: High-pressure burning velocities measurements for centrally-ignitedpremixed methane/air flames interacting with intense near-isotropic turbulenceat constant Reynolds numbers. Combust. Flame 159(8), 2608–2619 (2012)

    Google Scholar 

  • Nguyen, M., Yu, D., Shy, S.: General correlations of high pressure turbulent burning velocities with the consideration of Lewis number effect. Proc. Combust. Inst. 37(2), 2391–2398 (2019)

    Google Scholar 

  • OpenFOAM: The Open Source CFD Toolbox. User Guide (2014). https://www.openfoam.com/releases/openfoam-v1612+/

  • Poinsot, T., Veynante, D.: Theoretical and Numerical Combustion. R.T. Edwards Inc., Philadelphia (2005)

    Google Scholar 

  • Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    MATH  Google Scholar 

  • Schmid, H., Habisreuther, P., Leuckel, W.: A model for calculating heat release in premixed turbulent flames. Combust. Flame 113, 79–91 (1998)

    Google Scholar 

  • Smith, G., Golden, D., Frenklach, M., Moriarty, N., Eiteneer, B., Goldenberg, M., Bowman, C., Hanson, R., Song, S., Jr., W.G., Lissianski, V., Qin, Z.: Gri 3.0 reaction mechanism. (2000). http://www.me.berkeley.edu/gri mech

  • Soika, A., Dinkelacker, F., Leipertz, A.: Pressure influence on the flame front curvature of turbulent premixed flames: comparison between experiment and theory. Combust. Flame 132(3), 451–462 (2003)

    Google Scholar 

  • Tennekes, H., Lumley, J.L.: A first Course in Turbulence. M.I.T. Press, Cambridge (1972)

    MATH  Google Scholar 

  • Vukadinovic, V., Habisreuther, P., Zarzalis, N., Suntz, R.: Influence of Pressure on Markstein Number Effects in Turbulent Flame Front Propagation. In: Proceedings of ASME Turbo Expo, GT2013-94307 (2013)

  • Wang, J., Yu, S., Zhang, M., Jin, W., Huang, Z., Chen, S., Kobayashi, H.: Burning velocity and statistical flame front structure of turbulentpremixed flames at high pressure up to 1.0 MPa. Exp. Therm. Fluid. Sci. 68, 196–204 (2015)

    Google Scholar 

  • Weiß, M., Zarzalis, N., Suntz, R.: Experimental study of Markstein number effects on laminar flamelet velocity in turbulent premixed flames. Combust. Flame 154(4), 671–691 (2008)

    Google Scholar 

  • Wu, F., Saha, A., Chaudhuri, S., Law, C.K.: Propagation speeds of expanding turbulent flames of c4 to c8 n-alkanes at elevated pressures: experimental determination, fuel similarity, and stretch-affected local extinction. Proc. Combust. Inst. 35(2), 1501–1508 (2015)

    Google Scholar 

  • Yang, S., Saha, A., Liu, Z., Law, C.K.: Role of darrieuslandau instability in propagation of expanding turbulent flames. J. Fluid Mech. 853, 784–802 (2018)

    MATH  Google Scholar 

  • Zhang, F., Habisreuther, P., Hettel, M., Bockhorn, H.: Modeling of a premixed swirl-stabilized flame using a turbulent flame speed closure model in LES. Flow Turbul. Combust. 82, 537–551 (2009)

    MATH  Google Scholar 

  • Zhang, F., Habisreuther, P., Bockhorn, H., Nawroth, H., Paschereit, C.O.: On prediction of combustion generated noise with the turbulent heat release rate. Acta Acustica United with Acustica 99(6), 940–951 (2013)

    Google Scholar 

  • Zhang, F., Baust, T., Zirwes, T., Denev, J., Habisreuther, P., Zarzalis, N., Bockhorn, H.: Impact of infinite thin flame approach on the evaluation of flame speed using spherically expanding flames. Energy Technol 5, 1055–1063 (2017)

    Google Scholar 

  • Zhang, W., Wang, J., Guo, S., Yu, Q., Jin, W., Zhang, M., Huang, Z.: Effects of integral scale on darrieuslandau instability in turbulent premixed flames. Flow Turbul. Combust. 103(1), 225–246 (2019a)

    Google Scholar 

  • Zhang, F., Zirwes, T., Habisreuther, P., Bockhorn, H., Trimis, D., Nawroth, H., Paschereit, C.O.: Impact of combustion modeling on the spectral response of heat release in LES. Combust. Sci. Technol. 191(9), 1520–1540 (2019b)

    Google Scholar 

  • Zhang, F., Zirwes, T., Zarzalis, N., Bockhorn, H., Trimis, T.: Numerical computation of turbulent flow fields in a fan-stirred combustion bomb. Combust. Sci. Technol. 191(1), 178–195 (2019c)

    Google Scholar 

  • Zimont, V.L., Lipatnikov, A.N.: A numerical model of premixed turbulent combustion of gases. Chem. Phys. Rep. 14(7), 993–1025 (1995)

    Google Scholar 

  • Zirwes, T., Zhang, F., Denev, J.A., Habisreuther, P., Bockhorn, H.: Effect of elevated pressure on Markstein number of lean-premixed methane–air flames. In: Proceedings of the 28th Deutscher Flammentag, 549 (2017)

Download references

Acknowledgements

The authors gratefully acknowledge the financial support by the Helmholtz Association of German Research Centers (HGF), within the research field Energy, Material and Resources, Topic 4 Gasification (34.14.02). This work utilized computing resources from the Steinbuch Centre for Computing (SCC) at the Karlsruhe Institute of Technology (KIT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Feichi Zhang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, F., Zirwes, T., Habisreuther, P. et al. Numerical Simulations of Turbulent Flame Propagation in a Fan-Stirred Combustion Bomb and Bunsen-Burner at Elevated Pressure. Flow Turbulence Combust 106, 925–944 (2021). https://doi.org/10.1007/s10494-020-00209-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00209-y

Keywords

Navigation