Skip to main content
Log in

A comparative study of three numerical schemes for solving Atangana–Baleanu fractional integro-differential equation defined in Caputo sense

  • Original Article
  • Published:
Engineering with Computers Aims and scope Submit manuscript

Abstract

This study contains numerical schemes namely Linear scheme, Quadratic scheme, and Quadratic–linear scheme to solve a fractional integro-differential equation using the Atangana–Baleanu derivative defined in Caputo sense. The error bounds of the schemes are obtained. We discuss four test examples to perform the numerical simulations, and the obtained numerical results ensure that the presented schemes work well and the obtained approximate solution agrees with the analytical solution. The convergence order and maximum absolute errors of the schemes are calculated and their comparative performances are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Agrawal OP, Hasan MM, Tangpong X (2012) A numerical scheme for a class of parametric problem of fractional variational calculus. J Comput Nonlinear Dyn 7(2):021005

    Article  Google Scholar 

  2. Alkahtani BST, Koca İ, Atangana A (2017) Analysis of a new model of h1n1 spread: model obtained via Mittag–Leffler function. Adv Mech Eng 9(8):1687814017705566

    Article  Google Scholar 

  3. Araújo A, Branco J, Ferreira J (2009) On the stability of a class of splitting methods for integro-differential equations. Appl Numer Math 59(3–4):436–453

    Article  MathSciNet  Google Scholar 

  4. Arqub OA, Maayah B (2019) Fitted fractional reproducing kernel algorithm for the numerical solutions of abc-fractional volterra integro-differential equations. Chaos Solitons Fractals 126:394–402. https://doi.org/10.1016/j.chaos.2019.07.023

    Article  MathSciNet  MATH  Google Scholar 

  5. Atangana A, Baleanu D (2016) New fractional derivatives with nonlocal and non-singular kernel: theory and application to heat transfer model. arXiv preprint arXiv:1602.03408

  6. Ávalos-Ruiz L, Gómez-Aguilar J, Atangana A, Owolabi KM (2019) On the dynamics of fractional maps with power-law, exponential decay and Mittag–Leffler memory. Chaos Solitons Fractals 127:364–388

    Article  MathSciNet  Google Scholar 

  7. Baskonus H, Mekkaoui T, Hammouch Z, Bulut H (2015) Active control of a chaotic fractional order economic system. Entropy 17(8):5771–5783

    Article  Google Scholar 

  8. Baskonus HM, Bulut H (2016) Regarding on the prototype solutions for the nonlinear fractional-order biological population model. In: AIP Conference Proceedings, vol 1738, AIP Publishing, p. 290004

  9. Caputo M, Fabrizio M (2015) A new definition of fractional derivative without singular kernel. Progr Fract Differ Appl 1(2):1–13

    Google Scholar 

  10. Chen L, Chai Y, Wu R, Ma T, Zhai H (2013) Dynamic analysis of a class of fractional-order neural networks with delay. Neurocomputing 111:190–194

    Article  Google Scholar 

  11. Dehghan M, Shakeri F (2010) Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via he’s variational iteration technique. Int J Numer Methods Biomed Eng 26(6):705–715

    MathSciNet  MATH  Google Scholar 

  12. Diethelm K (2010) The analysis of fractional differential equations: an application-oriented exposition using differential operators of Caputo type. Springer Science & Business Media, Berlin

    Book  Google Scholar 

  13. Evirgen F, Özdemir N (2011) Multistage adomian decomposition method for solving nlp problems over a nonlinear fractional dynamical system. J Comput Nonlinear Dyn 6(2):021003

    Article  Google Scholar 

  14. Ghanbari B, Atangana A (2019) A new application of fractional Atangana-Baleanu derivatives: designing abc-fractional masks in image processing. Stat Mech Appl Phys A 542:123516

    Article  MathSciNet  Google Scholar 

  15. Gitterman M, Steinberg V (1980) Memory effects in the motion of a suspended particle in a turbulent fluid. Phys Fluids 23(11):2154–2160

    Article  MathSciNet  Google Scholar 

  16. Hilfer R et al (2000) Applications of fractional calculus in physics, vol 35. World scientific, Singapore

    Book  Google Scholar 

  17. Hossain ME (2016) Numerical investigation of memory-based diffusivity equation: the integro-differential equation. Arab J Sci Eng 41(7):2715–2729

    Article  MathSciNet  Google Scholar 

  18. Huang L, Li XF, Zhao Y, Duan XY (2011) Approximate solution of fractional integro-differential equations by taylor expansion method. Comput Math Appl 62(3):1127–1134

    Article  MathSciNet  Google Scholar 

  19. Jarad F, Abdeljawad T, Hammouch Z (2018) On a class of ordinary differential equations in the frame of Atangana–Baleanu fractional derivative. Chaos Solitons Fractals 117:16–20

    Article  MathSciNet  Google Scholar 

  20. Kilbas AAA, Srivastava HM, Trujillo JJ (2006) Theory and applications of fractional differential equations, vol 204. Elsevier Science Limited, Amsterdam

    Book  Google Scholar 

  21. Koca I (2017) Analysis of rubella disease model with non-local and non-singular fractional derivatives. Int J Optim Control Theories Appl (IJOCTA) 8(1):17–25

    Article  MathSciNet  Google Scholar 

  22. Kumar K, Pandey RK, Sharma S (2017) Comparative study of three numerical schemes for fractional integro-differential equations. J Comput Appl Math 315:287–302

    Article  MathSciNet  Google Scholar 

  23. Kumar K, Pandey RK, Sharma S (2019) Approximations of fractional integrals and caputo derivatives with application in solving Abel’s integral equations. J King Saud Univ Sci 31(4):692–700

    Article  Google Scholar 

  24. Magin RL (2006) Fractional calculus in bioengineering, vol 2. Begell House, Redding

    Google Scholar 

  25. Meng Z, Wang L, Li H, Zhang W (2015) Legendre wavelets method for solving fractional integro-differential equations. Int J Comput Math 92(6):1275–1291

    Article  MathSciNet  Google Scholar 

  26. Mittal R, Nigam R (2008) Solution of fractional integro-differential equations by adomian decomposition method. Int J Appl Math Mech 4(2):87–94

    Google Scholar 

  27. Oldham K, Spanier J (1974) The fractional calculus theory and applications of differentiation and integration to arbitrary order. Elsevier, Amsterdam

    MATH  Google Scholar 

  28. Owolabi KM (2019) Behavioural study of symbiosis dynamics via the Caputo and Atangana–Baleanu fractional derivatives. Chaos Solitons Fractals 122:89–101

    Article  MathSciNet  Google Scholar 

  29. Owolabi KM, Atangana A (2019) Computational study of multi-species fractional reaction-diffusion system with abc operator. Chaos Solitons Fractals 128:280–289

    Article  MathSciNet  Google Scholar 

  30. Owolabi KM, Atangana A (2019) Mathematical analysis and computational experiments for an epidemic system with nonlocal and nonsingular derivative. Chaos Solitons Fractals 126:41–49

    Article  MathSciNet  Google Scholar 

  31. Owolabi KM, Atangana A (2019) On the formulation of Adams–Bashforth scheme with Atangana–Baleanu–Caputo fractional derivative to model chaotic problems. Chaos Interdiscipl J Nonlinear Sci 29(2):023111

    Article  MathSciNet  Google Scholar 

  32. Owolabi KM, Hammouch Z (2019) Spatiotemporal patterns in the Belousov–Zhabotinskii reaction systems with Atangana–Baleanu fractional order derivative. Phys A Stat Mech Appl 523:1072–1090

    Article  MathSciNet  Google Scholar 

  33. Owolabi KM, Pindza E (2019) Modeling and simulation of nonlinear dynamical system in the frame of nonlocal and non-singular derivatives. Chaos Solitons Fractals 127:146–157

    Article  MathSciNet  Google Scholar 

  34. Podlubny I (1998) Fractional differential equations: an introduction to fractional derivatives, fractional differential equations, to methods of their solution and some of their applications, vol 198. Elsevier, Amsterdam

    MATH  Google Scholar 

  35. Rossikhin YA, Shitikova MV (1997) Applications of fractional calculus to dynamic problems of linear and nonlinear hereditary mechanics of solids. Appl Mech Rev 50(1):15–67. https://doi.org/10.1115/1.3101682

    Article  Google Scholar 

  36. Saadatmandi A, Dehghan M (2011) A legendre collocation method for fractional integro-differential equations. J Vib Control 17(13):2050–2058

    Article  MathSciNet  Google Scholar 

  37. Sharma S, Pandey RK, Kumar K (2018) Collocation method with convergence for generalized fractional integro-differential equations. J Comput Appl Math 342:419–430

    Article  MathSciNet  Google Scholar 

  38. Sharma S, Pandey RK, Kumar K (2019) Galerkin and collocation methods for weakly singular fractional integro-differential equations. Iran J Sci Technol Trans A Sci 43(4):1649–1656

    Article  MathSciNet  Google Scholar 

  39. Shukla AK, Pandey RK, Yadav S, Pachori RB (2020) Generalized fractional filter-based algorithm for image denoising. Circuits Syst Signal Process 39(1):363–390

    Article  Google Scholar 

  40. Tarasov VE (2009) Fractional integro-differential equations for electromagnetic waves in dielectric media. Theor Math Phys 158(3):355–359

    Article  Google Scholar 

  41. Yang C, Hou J (2013) Numerical solution of integro-differential equations of fractional order by Laplace decomposition method. Wseas Trans Math 12(12):1173–1183

    Google Scholar 

  42. Yang Q, Chen D, Zhao T, Chen Y (2016) Fractional calculus in image processing: a review. Fract Calculus Appl Anal 19(5):1222–1249

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors sincerely thank the reviewers for providing constructive comments for improvement of the manuscript. The first author acknowledges the financial support from the University Grants Commission, New Delhi, India under the JRF scheme.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh K. Pandey.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Sultana, F., Pandey, R.K. et al. A comparative study of three numerical schemes for solving Atangana–Baleanu fractional integro-differential equation defined in Caputo sense. Engineering with Computers 38 (Suppl 1), 149–168 (2022). https://doi.org/10.1007/s00366-020-01132-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00366-020-01132-6

Keywords

Navigation