Skip to main content
Log in

The Onano eruption (Latera volcano, Central Italy): an example of magma mixing/mingling as dominant process in a caldera-forming eruption

  • Original Paper
  • Published:
Contributions to Mineralogy and Petrology Aims and scope Submit manuscript

Abstract

The Onano eruption (~ 0.17 Ma) is the second to last caldera-forming eruption of the Latera volcano, in the northernmost sector of the Roman Comagmatic Province (Latium, Italy). The stratigraphic sequence, from base to top, includes ash and pumice-rich flow deposits, spatter-rich flow deposits and lag breccias associated with ash-rich flow deposits. By combining major and trace element compositions of the bulk rocks, matrix glasses and minerals of juvenile components from the different depositional units, we reconstruct the pre-eruptive evolution of the magma chamber and the syn-eruptive magma dynamics. Juvenile clasts with heterogeneous glass composition and/or mineral assemblage are a ubiquitous feature of the Onano eruption. The products cover a large compositional range from phonotephrite to phonolite. They are crystal poor, with felsic paragenesis associated to Mg-rich olivine (Fo82–90) and diopside (Fs4–7), these last not in equilibrium with the erupted melts. The mafic mineral assemblage suggests that the pre-eruption magma reservoir was periodically perturbed by the arrival of a primitive magma carrying on Mg-rich minerals and/or remobilizing a mafic crystal mush at the bottom of the reservoir. According to the results obtained from both rhyolite-MELTS and Rayleigh crystal fractionation modeling, we infer that the system evolved from phonotephrite to phonolite both via crystal fractionation and magma mixing between the two end members. Crystallization mostly proceeded at the wall of the reservoir, while magma mixing in the middle zones of the chamber generated the intermediate tephriphonolitic melts. The pre-eruptive chemical zoning was disrupted during the course of the eruption due to the simultaneous withdrawal of magma from different portions of the reservoir. During the first phase of the eruption, high-silica tephriphonolitic to phonolitic melts, residing in the upper part of the reservoir, were emitted with less involvement of the deeper phonotephrite. Phonotephritic magmas, with only a minor contribution of evolved melts, were later erupted as spatter-rich pyroclastic flows that preceded the main caldera collapse. During the caldera collapse, the whole reservoir was involved, leading to extensive and intimate syn-eruption mingling of the different melts. A comparison between the Onano eruption and other eruptions of the Italian high potassic volcanism provides new insights into the evolution of the Roman Comagmatic Province magmas and their eruptive processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Acocella V, Funiciello R (2006) Transverse systems along the extensional Tyrrhenian margin of central Italy and their influence on volcanism. Tectonics 25:TC2003. https://doi.org/10.1029/2005TC001845

    Article  Google Scholar 

  • Acocella V, Palladino DM, Cioni R, Russo P, Simei S (2012) Caldera structure, amount of collapse, and erupted volumes: the case of Bolsena caldera, Italy. Geol Soc Am Bull 124:1562–1576. https://doi.org/10.1130/B30662.1

    Article  Google Scholar 

  • Appleton JD (1972) Petrogenesis of potassium-rich lavas from Roccamonfina Volcano, Roman Region, Italy. J Petrol 13:425–456

    Google Scholar 

  • Azzaro E, Cocozza T, Di Sabatino B, Gasperi G, Gelmini R, Lazzarotto A (1976) Geology and Petrography of the Verrucano and Paleozoic Formations of Southern Tuscany and Northern Latium (Italy). In: Falke H (ed) The continental Permain in Central, West, and South Europe. Nato Advanced Study Institutes Series (Series C-Mathematical and Physical Sciences), vol 22. Springer, The Netherlands

    Google Scholar 

  • Bacon CR, Druitt TH (1988) Compositional evolution of the zoned calcalkaline magma chamber of Mount Mazama, Crater Lake, Oregon. Contrib Mineral Petr 98:224–256. https://doi.org/10.1007/BF00402114

    Article  Google Scholar 

  • Barberi F, Innocenti F, Landi P, Rossi U, Saitta M, Santacroce R, Villa IM (1984) The evolution of Latera caldera (central Italy) in the light of subsurface data. Bull Volcanol 47:125–141

    Google Scholar 

  • Barberi F, Buonasorte G, Cioni R, Fiordelisi A, Foresi L, Iaccarino S, Laurenzi MA, Sbrana A, Vernia L, Villa IM (1994) Plio-Pleistocene geological evolution of the geothermal area of Tuscany and Latium. Memorie Descrittive della Carta Geologica d’Italia 49:77–134

    Google Scholar 

  • Brocchini D, Di Battistini G, Laurenzi M, Vernia L, Bargossi GM (2000) New 40Ar/39Ar datings on the southeastern sector of the Vulsinian Volcanic District (central Italy). Boll Soc Geol It 119:113–120

    Google Scholar 

  • Buono G, Pappalardo L, Petrosino P (2020) Magma storage and ascent during the largest eruption of Somma-Vesuvius volcano: Pomici di Base (22 ka) Plinian event. B Geofis Teor Appl 61:23–40. https://doi.org/10.4430/bgta0293

    Article  Google Scholar 

  • Buttinelli M, Chiarabba C, Anselmi M, Bianchi I, De Rita D, Quattrocchi F (2014) Crustal structure of Northern Latium (central Italy) from receiver functions analysis: new evidences of a post-collisional back-arc margin evolution. Tectonophysics 621:148–158. https://doi.org/10.1016/j.tecto.2014.02.010

    Article  Google Scholar 

  • Caricchi L, Sheldrake TE, Blundy J (2018) Modulation of magmatic processes by CO2 flushing. Earth Planet Sci Lett 491:160–171. https://doi.org/10.1016/j.epsl.2018.03.042

    Article  Google Scholar 

  • Cashman KV, Giordano G (2014) Calderas and magma reservoirs. J Volcanol Geoth Res 288:28–45. https://doi.org/10.1016/j.jvolgeores.2014.09.007

    Article  Google Scholar 

  • Chiodini G, Frondini F, Ponziani F (1995) Deep structures and carbon dioxide degassing in Central Italy. Geothermics 24:81–94

    Google Scholar 

  • Cioni R, Sbrana A, Bertagnini A, Buonasorte G, Landi P, Rossi U, Salvati L (1987) Tephrostratigraphic correlations in the Vulsini, Vico and Sabatini volcanic successions. Period Mineralog 56:137–155

    Google Scholar 

  • Cioni R, Civetta L, Marianelli P, Metrich N, Santacroce R, Sbrana A (1995) Compositional layering and syn-eruptive mixing of a periodically refilled shallow magma chamber: the AD 79 Plinian eruption of Vesuvius. J Petrol 36:739–776

    Google Scholar 

  • Cioni R, Marianelli P, Santacroce R (1999) Temperature of Vesuvius magmas. Geology 27:443–446

    Google Scholar 

  • Civetta L, Innocenti F, Manetti P, Peccerillo A, Poli G (1981) Geochemical characteristics of potassic volcanics from Mrs Ernici (Southern Latium, Italy). Contrib Mineral Petrol 78:37–47

    Google Scholar 

  • Conte AM, Dolfi D, Gaeta M, Misiti V, Mollo S, Perrinelli C (2009) Experimental constraints on evolution of leucite-basanite magma at 1 and 10–4 GPa: implications for parental compositions of Roman high-potassium magmas. Eur J Mineral 21:763–782

    Google Scholar 

  • Dallai L, Cioni R, Boschi C, D’Oriano C (2011) Carbonate-derived CO2 purging magma at depth: Influence on the eruptive activity of Somma-Vesuvius, Italy. Earth Planet Sci Lett 310. Doi: 10.1016/j.epsl.2011.07.013

  • de'Gennaro M and Langella A (1996) Italian zeolitized rocks of technological interest. Mineral Deposita 31:452-472. https://doi.org/10.1007/BF00196127

  • Eichelberger JC, Chertkoff DG, Dreher ST, Nye CJ (2000) Magmas in collision: rethinking chemical zonation in silicic magmas. Geology 28:603–606. https://doi.org/10.1130/0091-7613(2000)28<603:MICRCZ>2.0.CO;2

    Article  Google Scholar 

  • Ellis BS, Bachmann O, Wolff JA (2014) Cumulate fragments in silicic ignimbrites: the case of the Snake River Plain. Geology 42:431–434. https://doi.org/10.1130/G35399.1

    Article  Google Scholar 

  • Fonaseri M (1985) Geochronology of volcanic rocks from Latium (Italy). Rend Soc It Mineral Petrol 40:73–106

    Google Scholar 

  • Forni F, Petricca E, Bachmann O, Mollo S, De Astis G, Piochi M (2018) The role of magma mixing/mingling and cumulate melting in the Neapolitan Yellow Tuff caldera-forming eruption (Campi Flegrei, Southern Italy). Contrib Mineral Petr 173:45. https://doi.org/10.1007/s00410-018-1471-4

    Article  Google Scholar 

  • Freda C, Gaeta M, Misiti V, Mollo S, Dolfi D, Scarlato P (2008) Magma–carbonate interaction: an experimental study on ultrapotassic rocks from Alban Hills (Central Italy). Lithos 101:397–415

    Google Scholar 

  • Freda C, Gaeta M, Giaccio B et al (2011) CO2-driven large mafic explosive eruptions: the Pozzolane Rosse case study from the Colli Albani Volcanic District (Italy). Bull Volcanol 73:241–256. https://doi.org/10.1007/s00445-010-0406-3

    Article  Google Scholar 

  • Gaeta M, Di Rocco T, Freda C (2009) Carbonate assimilation in open magmatic systems: the role of melt-bearing skarns and cumulate-forming processes. J Petrol 50:361–385

    Google Scholar 

  • Garg D, Papale P, Colucci S et al (2019) Long-lived compositional heterogeneities in magma chambers, and implications for volcanic hazard. Sci Rep 9:3321. https://doi.org/10.1038/s41598-019-40160-1

    Article  Google Scholar 

  • Ghiara MR, Petti C, Morbidelli P (1999) Analcimization processes in the pyroclastic rocks from Phlegraean fields (southern Italy): compositional variations and geochemical balances. Period Mineral 68:261–273

    Google Scholar 

  • Giordano G, De Benedetti AA, Diana A, Diano G, Gaudioso F, Marasco F, Miceli M, Mollo S, Cas RAF, Funiciello R (2006) The Colli Albani mafic caldera (Roma, Italy): stratigraphy, structure and petrology. J Volcanol Geoth Res 155:49–80

    Google Scholar 

  • Gualda GAR, Ghiorso MS (2013) The Bishop Tuff giant magma body: an alternative to the standard model. Contrib Mineral Petrol 166:755–775. https://doi.org/10.1007/s00410-013-0901-6

    Article  Google Scholar 

  • Gualda GAR, Ghiorso MS, Lemons RV, Carley TL (2012) Rhyolite-MELTS: a modified calibration of MELTS optimized for silica-rich, fluid-bearing magmatic systems. J Petrol 53:875–890. https://doi.org/10.1093/petrology/egr080

    Article  Google Scholar 

  • Hamilton DL, McKenzie WS (1965) Phase equilibrium studies in the system NaAlSiO4–KAlSiO4–SiO2–H2O. Mineral Magazine 34:214–231

    Google Scholar 

  • Hildreth W (1981) Gradients in silicic magma chambers: implications for lithospheric magmatism. J Geophys Res 86:10153–10192

    Google Scholar 

  • Hildreth W, Wilson CJN (2007) Compositional zoning of the Bishop Tuff. J Petrol 48:951–999. https://doi.org/10.1093/petrology/egm007

    Article  Google Scholar 

  • Iacono-Marziano G, Gaillard F, Pichavant M (2007) Limestone assimilation and the origin of CO2 emissions at the Alban Hills (Central Italy): constraints from experimental petrology. J Volcanol Geoth Res 166:91–105. https://doi.org/10.1016/j.jvolgeores.2007.07.001

    Article  Google Scholar 

  • Iacono-Marziano G, Gaillard F, Pichavant M (2008) Limestone assimilation by basaltic magmas: an experimental re-assessment and application to Italian volcanoes. Contrib Mineral Petrol 155:719–738. https://doi.org/10.1007/s00410-007-0267-8

    Article  Google Scholar 

  • Iacono-Marziano G, Gaillard F, Scaillet B, Pichavant M, Chiodini G (2009) Role of non-mantle CO2 in the dynamics of volcano degassing: the Mount Vesuvius example. Geology 37:319–322. https://doi.org/10.1130/G25446A.1

    Article  Google Scholar 

  • Jolis EM, Freda C, Troll VR et al (2013) Experimental simulation of magma–carbonate interaction beneath Mt. Vesuvius. Italy Contrib Mineral Petrol 166:1335–1353. https://doi.org/10.1007/s00410-013-0931-0

    Article  Google Scholar 

  • Landi P (1987) Stratigraphy and petrochemical evolution of Latera Volcano (Central Italy). Per Mineral 56:201–224

    Google Scholar 

  • Landi P, Bertagnini A, Rosi M (1999) Chemical zoning and crystallization mechanisms in the magma chamber of the Pomici di Base plinian eruption of Somma-Vesuvius (Italy). Contrib Mineral Petrol 135:179–197. https://doi.org/10.1007/s004100050505

    Article  Google Scholar 

  • Laumonier M, Scaillet B, Arbaret L, Champallier R (2014) Experimental simulation of magma mixing at high pressure. Lithos 196–197:281–300

    Google Scholar 

  • Lipman PW, Zimmerer MJ, McIntosh WC (2015) An ignimbrite caldera from the bottom up: Exhumed floor and fill of the resurgent Bonanza caldera, Southern Rocky Mountain volcanic field, Colorado. Geosphere 11:1902–1947. https://doi.org/10.1130/GES01184.1

    Article  Google Scholar 

  • Lisi A, Marchetti A, Frepoli A, Pagliuca NM, Mele G, Carapezza ML, Caciagli M, Famiani D, Gottuso A, Braun T (2019) Microseismicity analysis in the geothermal area of Torre Alfina, Central Italy. J Seismol 23:1279–1298. https://doi.org/10.1007/s10950-019-09865-8

    Article  Google Scholar 

  • Marianelli P, Sbrana A, Métrich N, Cecchetti A (2005) The deep feeding system of Vesuvius involved in recent violent strombolian eruptions. Geophys Res Lett 32. Doi: 10.1029/2004GL021667, 2005

  • Marsella M, Palladino DM, Trigila R (1987) The Onano pyroclastic formation (Vulsini Volcanoes): depositional features, distribution and eruptive mechanisms. Per Mineral 56:223–238

    Google Scholar 

  • Masotta M, Gaeta M, Gozzia F, Marra F, Palladino DM, Sottili G (2010) H2O- and temperature-zoning in magma chambers: the example of the Tufo Giallo della Via Tiberina eruptions (Sabatini Volcanic District, central Italy). Lithos 118:119–130

    Google Scholar 

  • Masotta M, Freda C, Gaeta M (2012) Origin of crystal-poor, differentiated magmas: insights from thermal gradient experiments. Contrib Mineral Petrol 163:49–65

    Google Scholar 

  • Metzeltin S, Vezzoli L (1983) Contributi alla geologia del vulcano di Latera (Monti Vulsini, Toscana meridionale-Lazio settentrionale). Mem Soc Geol Ital 25:247–271

    Google Scholar 

  • Mollo S, Masotta M, Forni F, Bachmann O, De Astis G, Moore G, Scarlato P (2015) A K-feldspar–liquid hygrometer specific to alkaline differentiated magmas. Chem Geol 392:1–8

    Google Scholar 

  • Nappi G (1969) Genesi ed evoluzione della Caldera di Latera. Boll Serv Geol It 90:61–81

    Google Scholar 

  • Nappi G, Renzulli A, Santi P, Gillot Y (1995) Geological evolution and geochronology of the Vulsini Volcanic District (central Italy). Boll Soc Geolog Italiana 114:599–613

    Google Scholar 

  • Palladino DM, Agosta E (1997) Pumice fall deposits of the Western Vulsini Volcanoes (Central Italy). J Volcanol Geotherm Res 78:77–102

    Google Scholar 

  • Palladino DM, Simei S (2005) Eruptive dynamics and caldera collapse during the Onano eruption, Vulsini, Italy. Bull Volcanol 67:423–440

    Google Scholar 

  • Palladino DM, Simei S, Sottili G, Trigila R (2010) Integrated approach for the reconstruction of stratigraphy and geology of Quaternary volcanic terrains: an application to the Vulsini Volcanoes (central Italy). In: Groppelli GE, Viereck L (eds) Stratigraphy and geology in volcanic areas. Geol Soc Am 464:66–84

  • Palme H, O'Neill HSC (2004) Cosmochemical estimates of mantle composition. In: Holland HD, Turrekian KK (eds) Treatise on geochemistry. Elsevier, Amsterdam, pp 1–38

    Google Scholar 

  • Pappalardo L, Buono G, Fanara S et al (2018) Combining textural and geochemical investigations to explore the dynamics of magma ascent during Plinian eruptions: a Somma-Vesuvius volcano (Italy) case study. Contrib Mineral Petrol 173:61. https://doi.org/10.1007/s00410-018-1486-x

    Article  Google Scholar 

  • Peccerillo A (2017) Cenozoic volcanism in the Tyrrhenian Sea Region (advanced in volcanology). Springer International Publishing, Cham, pp 399. Doi: https://doi.org/10.1007/978-3-319-42491-0

  • Peccerillo A, Manetti P (1985) The potassium alkaline volcanism of central Southern Italy: a review of the data relevant to petrogenesis and geodynamic significance. Trans Geol Soc S Afr 88:379–394

    Google Scholar 

  • Pichavant M, Macdonald R (2007) Crystallization of primitive basaltic magmas at crustal pressures and genesis of the calc-alkaline igneous suite: experimental evidence from St Vincent, Lesser Antilles arc. Contrib Mineral Petrol 154:535–558. https://doi.org/10.1007/s00410-007-0208-6

    Article  Google Scholar 

  • Pichavant M, Scaillet B, Pommier A, Iacono-Marziano G, Cioni R (2014) Nature and evolution of primitive vesuvius magmas: an experimental study. J Petrol 55:2281–2310. https://doi.org/10.1093/petrology/egu057

    Article  Google Scholar 

  • Putirka KD (2008) Thermometers and barometers for volcanic systems. Rev Mineral Geochem 69:61–120. https://doi.org/10.2138/rmg.2008.69.3

    Article  Google Scholar 

  • Putnis CV, Geisler T, Schmid-Beurmann P, Stephan T, Giampaolo C (2007) An experimental study of the replacement of leucite by analcime. Am Mineral 92:19–26. https://doi.org/10.2138/am.2007.2249

    Article  Google Scholar 

  • Rosi M, Santacroce R (1983) The AD 472 “pollena eruption” volcanological and petrological data for this poorly known, plinian-type event at Vesivius. J Volcanol Geoth Res 17:249–272

    Google Scholar 

  • Rossetti F, Balsamo F, Villa IM, Bouybaouenne M, Faccenna C, Funiciello R (2008) Pliocene–Pleistocene HT–LP metamorphism during multiple granitic intrusions in the southern branch of the Larderello geothermal field (southern Tuscany, Italy). J Geol Soc 165:247–262

    Google Scholar 

  • Santacroce R, Cioni R, Marianelli P, Sbrana A, Sulpizio R, Zanchetta G, Donahue DJ, Joron JL (2008) Age and whole rock–glass compositions of proximal pyroclastics from the major explosive eruptions of Somma–Vesuvius: a review as a tool for distal tephrostratigraphy. J Volcanol Geoth Res 177:1–18

    Google Scholar 

  • Sisson TW, Grove TL (1993) Experimental investigations of the role of H2O in calc-alkaline differentiation and subduction zone magmatism. Contrib Mineral Petrol 113:143–166. https://doi.org/10.1007/BF00283225

    Article  Google Scholar 

  • Smith RL (1979) Ash-flow magmatism. Geol Soc Am Spec Publ 180:5–27

    Google Scholar 

  • Sparks RSJ (1975) Stratigraphy and geology of the ignimbrites of Vulsini Volcano, Italy. Geol Rundsch 64:497–523

    Google Scholar 

  • Tarquini S, Vinci S, Favalli M, Doumaz F, Fornaciai A, Nannipieri L (2012) Release of a 10-m-resolution DEM for the Italian territory: comparison with global-coverage DEMs and anaglyph-mode exploration via the web. Comput Geosci 38:168–170

    Google Scholar 

  • Turbeville BN (1992) 40Ar/39Ar ages and stratigraphy of the Latera caldera, Italy. Bull Volcanol 55:110–118

    Google Scholar 

  • Achterbergh van E, Ryan CG, Jackson SE, Griffin W (2001) Data reduction software for LA–ICP–MS. In: Sylvester P (ed) Laser ablation–ICP–mass spectrometry in the earth sciences: principles and applications. Mineralogical Association of Canada Short Course Series 29:239–243

  • Vezzoli L, Conticelli S, Innocenti F, Landi P, Manetti P, Palladino DM, Trigila R (1987) Stratigraphy of the Latera Volcanic Complex: proposals for a new nomenclature. Per Mineral 56:89–110

    Google Scholar 

  • Vinkler AP, Cashman KV, Giordano G, Groppelli G (2012) Evolution of the mafic Villa Senni caldera-forming eruption at Colli Albani volcano, Italy, indicated by textural analysis of juvenile fragments. J Volcanol Geoth Res 235–236:37–54

    Google Scholar 

  • Washington HS (1906) The roman comagmatic region. Carnegie Institute, Washington, p 57

    Google Scholar 

Download references

Acknowledgements

This work was supported by FISR 2016, Project “Centro di studio e monitoraggio dei rischi naturali dell’Italia Centrale. We would like to thank Dr. M. Nazzari and Dr. A. Langone for their assistance during the microprobe and laser analyses, respectively. Furthermore, the authors are grateful to an anonymous reviewer and M. Laumonier for their detailed comments, which improved the clarity of the manuscript. G. Moore is thanked for editorial handling.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrizia Landi.

Additional information

Communicated by Gordon Moore.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 131 kb)

Supplementary file2 (DOCX 95 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Landi, P., D’Oriano, C. The Onano eruption (Latera volcano, Central Italy): an example of magma mixing/mingling as dominant process in a caldera-forming eruption. Contrib Mineral Petrol 175, 84 (2020). https://doi.org/10.1007/s00410-020-01724-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00410-020-01724-x

Keywords

Navigation