Skip to main content
Log in

Recyclable heterogeneous Pd nanoparticles supported on plant polyphenol-modified γ-Al2O3 for hydrodechlorination of 2,4-dichlorophenols

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Heterogeneous Pd catalysts were developed by immobilizing Pd nanoparticles (Pd NPs) onto plant polyphenol (bayberry tannin, BT) decorated γ-Al2O3. The abundant hydroxyls of plant polyphenols were capable of stabilizing the Pd NPs. Transmission electron microscopy observation confirmed that the Pd NPs with the diameter of 3.75 ± 0.5 nm were highly dispersed in the catalyst. The as-prepared Al2O3–BT–Pd catalysts were found to be highly active in mild hydrodechlorination (HDC) of 2,4-dichlorophenols (DCPs) using formic acid as a hydrogen source. The 2,4-DCPs were completely dechlorinated in 4 h at 30°C and under atmospheric pressure. During the catalytic HDC, the stabilizing capability of BT successfully prevented the leakage and aggregation of Pd NPs, thus ensuring a high cycling stability with stable and high catalytic activity. The Al2O3–BT–Pd catalysts were recycled six times, without obvious loss of activity. In the sixth cycle, the catalytic HDC yield still reached 98.29% under the same reaction conditions, superior to the control catalysts, including γ-Al2O3 supported Pd NPs (Al2O3–Pd) and powdered activated carbon supported Pd NPs (AC–Pd). Furthermore, the Al2O3–BT–Pd also showed high activity in the mild catalytic HDC of 2,4,6-trichlorophenols and chlorobenzene derivatives. Our results demonstrated efficient catalysts to address the environmental issue of chlorophenol pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Liu Y, Dong Z, Li X, Le X, Zhang W and Ma J 2015 RSC Adv. 5 20716

    Article  CAS  Google Scholar 

  2. Olaniran A O and Igbinosa E O 2011 Chemosphere 83 1297

    Article  CAS  Google Scholar 

  3. Cruz A L N D, Cook R L, Lomnicki S M and Dellinger B 2012 Environ. Sci. Technol. 46 5971

    Article  CAS  Google Scholar 

  4. Peng Y, Chen J, Lu S, Huang J, Zhang M, Buekens A et al 2016 Chem. Eng. J. 292 398

    Article  CAS  Google Scholar 

  5. Hou J, Liu F, Wu N, Ju J and Yu B 2016 J. Nanobiotechnol. 14 5

    Article  Google Scholar 

  6. Kantar C, Oral O, Urken O, Oz N A and Keskin S 2019 Environ. Pollut. 247 349

    Article  CAS  Google Scholar 

  7. Jin Z, Yu C, Wang X, Wan Y, Li D and Lu G 2011 J. Hazard. Mater. 186 1726

    Article  CAS  Google Scholar 

  8. Pizarro A H, Molina C B, Fierro J L G and Rodriguez J J 2016 Appl. Catal. B: Environ. 197 236

    Article  CAS  Google Scholar 

  9. Baeza J A, Calvo L, Gilarranz M A and Rodriguez J J 2014 Chem. Eng. J. 240 271

    Article  CAS  Google Scholar 

  10. Xiong J, Ma Y, Yang W and Zhong L 2018 J. Hazard. Mater. 355 89

    Article  CAS  Google Scholar 

  11. Diaz E, Mohedano A F, Casas J A, Calvo L, Gilarranz M A and Rodriguez J J 2011 Appl. Catal. B: Environ. 106 469

    Article  CAS  Google Scholar 

  12. Gómez-Quero S, Cárdenas-Lizana F and Keane M A 2011 Chem. Eng. J. 166 1044

    Article  Google Scholar 

  13. Munoz M, de Pedro Z M, Casas J A and Rodriguez J J 2014 Appl. Catal. A 488 78

  14. Díaz E, Casas J A, Mohedano Á F, Calvo L, Gilarranz M A and Rodríguez J J 2008 Ind. Eng. Chem. Res. 47 3840

    Article  Google Scholar 

  15. Dong Z, Le X, Liu Y, Dong C and Ma J 2014 J. Mater. Chem. A 2 18775

    Article  CAS  Google Scholar 

  16. Babu N S, Lingaiah N, Gopinath R, Sankar Reddy P S and Sai Prasad P S 2007 J. Phys. Chem. C 111 6447

    Article  CAS  Google Scholar 

  17. Wang Q, Wang J, Wang D, Turhong M and Zhang M 2015 Chem. Eng. J. 280 158

    Article  CAS  Google Scholar 

  18. Zhou J, Chen Q, Han Y and Zheng S 2015 RSC Adv. 5 91363

    Article  CAS  Google Scholar 

  19. Zhang Y, Liu Y, Wang X, Sun Z, Ma J, Wu T et al 2014 Carbohydr. Polym. 101 392

    Article  CAS  Google Scholar 

  20. Hao B, Xiao M, Wang Y, Shang H, Ma J, Liao Y et al 2018 ACS Appl. Mater. Interfaces 10 34332

    Article  CAS  Google Scholar 

  21. Barbehenn R V and Constabel C P 2011 Phytochemistry 72 1551

    Article  CAS  Google Scholar 

  22. Ye X, Ke L, Wang Y, Gao K, Cui Y, Wang X et al 2018 Chem. Eur. J. 24 10953

    Article  CAS  Google Scholar 

  23. Zhang T, Wang Y, Kuang Y, Yang R, Ma J, Zhao S et al 2017 Appl. Surf. Sci. 404 418

    Article  CAS  Google Scholar 

  24. Wang Z, Li X, Liang H, Ning J, Zhou Z and Li G 2017 Mater. Sci. Eng. C 79 227

    Article  CAS  Google Scholar 

  25. Zhou P, Yuan H, Ou L and Zhiyuan P 2019 J. Macromol. Sci. A 56 717

    Article  CAS  Google Scholar 

  26. Zhang X, Lin X, He Y and Luo X 2019 Int. J. Biol. Macromol. 136 445

    Article  CAS  Google Scholar 

  27. Yu X, Wu T, Yang X J, Xu J, Auzam J, Semiat R et al 2016 J. Hazard. Mater. 305 178

    Article  CAS  Google Scholar 

  28. Shao M, Yu T, Odell J H, Jin M and Xia Y 2011 Chem. Commun. 47 6566

    Article  CAS  Google Scholar 

  29. Arjona N, Guerra-Balcázar M, Ortiz-Frade L, Osorio-Monreal G, Álvarez-Contreras L, Ledesma-García J et al 2013 J. Mater. Chem. A 1 15524

    Article  CAS  Google Scholar 

  30. Hoflund G B, Hagelin H A, Weaver J F and Salaita G N 2003 Appl. Surf. Sci. 205 102

    Article  CAS  Google Scholar 

  31. Veisi H, Najafi S and Hemmati S 2018 Int. J. Biol. Macromol. 113 186

    Article  CAS  Google Scholar 

  32. Huang X, Wu H, Pu S, Zhang W, Liao X and Shi B 2011 Green Chem. 13 950

    Article  CAS  Google Scholar 

  33. Jeong G H, Kim S H, Kim M, Choi D, Lee J H, Kim J H et al 2011 Chem. Commun. 47 12236

    Article  CAS  Google Scholar 

  34. Ruiz-Garcia C, Heras F, Calvo L, Alonso-Morales N, Rodríguez J J and Gilarranz M A 2019 Ind. Eng. Chem. Res. 58 4355

    Article  CAS  Google Scholar 

  35. Xu J, Cao Z, Liu X, Zhao H, Xiao X, Wu J et al 2016 J. Hazard. Mater. 317 656

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by National Natural Science Foundation of China (Grant No. 21776188).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hui Mao.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 574 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, M., Peng, Y., Pang, M. et al. Recyclable heterogeneous Pd nanoparticles supported on plant polyphenol-modified γ-Al2O3 for hydrodechlorination of 2,4-dichlorophenols. Bull Mater Sci 43, 215 (2020). https://doi.org/10.1007/s12034-020-02214-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02214-3

Keywords

Navigation