Skip to main content

Advertisement

Log in

Microstructure and optical properties of TiO2- and HA-coated Ti6Al7Nb alloy by sol–gel method

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the combination of titanium dioxide (TiO2) and/or hydroxyapatite (HA) coatings on Ti6Al7Nb titanium alloy to be used as an implant was performed in different solution retention times by the sol–gel dip-coating method and the characterization and optical properties of these coatings were investigated. Two different coatings were made on the substrate, the first group of samples was first coated with TiO2 and then with HA, while the second group of samples was coated with TiO2 alone. Before sol–gel coating, the samples were rinsed in distilled water and dried at 200°C for 2 h. The samples were immersed perpendicular to the coating solution. Thin films were obtained at a draw rate of 2 mm s−1. Microstructure investigations of the prepared coatings were examined under optical and scanning electron microscopes, while solid-state elemental fractions were determined by energy-dispersive X-ray spectroscopy analysis. Fourier-transform infrared spectroscopy analysis was performed to determine the functional groups placed on the surface of the material. The optical properties of the material were determined by UV analysis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Brinker C J and Scherer G W 2013 Sol–gel science: the physics and chemistry of sol–gel processing (Amsterdam, Netherlands: Academic Press, Elsevier)

    Google Scholar 

  2. Guglielmi M J 1997 Sol–Gel Sci. Technol. 8 443

    CAS  Google Scholar 

  3. O’Regan B and Grätzel M 1991 Nature 353 737

    Google Scholar 

  4. Atashbar M Z, Sun H T, Gong B, Wlodarski W and Lamb R 1998 Thin Solid Films 326 238

    CAS  Google Scholar 

  5. Catauro M, Bollino F, Papale F, Marciano S and Pacifico S 2015 Mater. Sci. Eng. C 47 135

    CAS  Google Scholar 

  6. Catauro M, Bollino F, Papale F, Giovanardi R and Veronesi P 2014 Mater. Sci. Eng. C 43 375

    CAS  Google Scholar 

  7. Domínguez-Trujillo C, Peón E, Chicardi E, Pérez H, Rodríguez-Ortiz J A, Pavón J J et al 2018 Surf. Coatings Technol. 333 158

    Google Scholar 

  8. Mechiakh R, Ben Sedrine N and Chtourou R 2011 Appl. Surf. Sci. 257 9103

    CAS  Google Scholar 

  9. Miki T, Nishizawa K, Suzuki K and Kato K 2004 Mater. Lett. 58 2751

    CAS  Google Scholar 

  10. Sonmezoglu S, Arslan A, Serin T and Serin N 2011 Phys. Scr. 84 065602

    Google Scholar 

  11. Turhan I 2000 MSc thesis (Istanbul Technical University)

  12. Turhan I, Tepehan F Z and Tepehan G G 2005 J. Mater. Sci. 40 1359

    CAS  Google Scholar 

  13. Wen T, Gao J, Shen J and Zhou Z 2001 J. Mater. Sci. 36 5923

    CAS  Google Scholar 

  14. Zoppi R A, Trasferetti B C and Davanzo C U 2003 J. Electroanal. Chem. 544 47

    CAS  Google Scholar 

  15. Mechiakh R, Gheriani R and Chtourou R 2012 J. Nano Res. 16 105

    Google Scholar 

  16. Im K H, Lee S B, Kim K M and Lee Y K 2007 Surf. Coatings Technol. 202 1135

    CAS  Google Scholar 

  17. He G, Guo B, Wang H, Liang C, Ye L, Lin Y et al 2014 Cell Prolif. 47 258

    CAS  Google Scholar 

  18. Dikici B, Niinomi M, Topuz M, Say Y, Aksakal B, Yilmazer H et al 2018 Prot. Met. Phys. Chem. Surf. 54 457

    CAS  Google Scholar 

  19. Azari R, Rezaie H R and Khavandi A 2019 Ceram. Int. 45 17545

    CAS  Google Scholar 

  20. Robertson S F, Bandyopadhyay A and Bose S 2019 Surf. Coatings Technol. 372 140

    CAS  Google Scholar 

  21. Mohammed M T and Hussein S M 2019 Mater. Res. Express 6 076426

    CAS  Google Scholar 

  22. Zhang W, Liu W, Liu Y and Wang C 2009 Ceram. Int. 35 1513

    CAS  Google Scholar 

  23. Matthews R W 1987 J. Phys. Chem. 91 3328

    CAS  Google Scholar 

  24. Yu J, Zhao X and Zhao Q 2001 Mater. Chem. Phys. 69 25

    CAS  Google Scholar 

  25. Kwon C H, Kim J H, Jung I S, Shin H and Yoon K H 2003 Ceram. Int. 29 851

    CAS  Google Scholar 

  26. Barau A, Crisan M, Gartner M, Danciu V, Cosoveanu V, Marian I et al 2005 Mater. Sci. Forum 492 311

    Google Scholar 

  27. Ozturk S 2011 MSc thesis (Istanbul: Yildiz Technical University)

  28. Dvoranová D, Brezová V, Mazúr M and Malati M A 2002 Appl. Catal. B Environ. 37 91

    Google Scholar 

  29. Lim Y M, Hwang K S and Park Y J 2001 J. Sol–Gel Sci. Technol. 21 123

    CAS  Google Scholar 

  30. García C, Ceré S and Durán A 2004 J. Non-Cryst. Solids 348 218

    Google Scholar 

  31. Fathi M H and Doost Mohammadi A 2008 Mater. Sci. Eng. A 474 128

    Google Scholar 

  32. Ballarre J, Manjubala I, Schreiner W H, Orellano J C, Fratzl P and Ceré S 2010 Acta Biomater. 6 1601

    CAS  Google Scholar 

  33. Ballarre J, Seltzer R, Mendoza E, Orellano J C, Mai Y W, García C et al 2011 Mater. Sci. Eng. C 31 545

    CAS  Google Scholar 

  34. Fu T, Wu X M, Wu F, Luo M, Dong B H and Ji Y 2012 Trans. Nonferrous Met. Soc. China 22 1661

    CAS  Google Scholar 

  35. Höhn S and Virtanen S 2015 Appl. Surf. Sci. 329 356

    Google Scholar 

  36. Lim H P, Park S W, Yun K D, Park C, Ji M K, Oh G J et al 2018 J. Nanosci. Nanotechnol. 18 1403

    CAS  Google Scholar 

  37. Harle J, Kim H W, Mordan N, Knowles J C and Salih V 2006 Acta Biomater. 2 547

    Google Scholar 

  38. Shin J H, Kim J H, Koh J T, Lim H P, Oh G J, Lee S W et al 2015 J. Nanosci. Nanotechnol. 15 6164

    CAS  Google Scholar 

  39. Toygun S, Konecoglu G and Kalpakli Y 2013 J. Eng. Nat. Sci. Sigma 31 456

    Google Scholar 

  40. Buyuksagis A 2010 Electron. J. Mach. Technol. 7 1

    Google Scholar 

  41. Chellappa M, Anjaneyulu U, Manivasagam G and Vijayalakshmi U 2015 Int. J. Nanomedicine 10 31

    CAS  Google Scholar 

  42. Hamadanian M, Reisi-Vanani A and Majedi A 2010 J. Iran. Chem. Soc. 7 52

    Google Scholar 

  43. Mohan L, Durgalakshmi D, Geetha M, Sankara Narayanan T S N and Asokamani R 2012 Ceram. Int. 38 3435

    CAS  Google Scholar 

  44. Askari M B, Tavakoli Banizi Z, Seifi M, Bagheri Dehaghi S and Veisi P 2017 Optik 149 447

    CAS  Google Scholar 

  45. El Hadad A A, Peón E, García-Galván F R, Barranco V, Parra J, Jiménez-Morales A et al 2017 Materials 10 94

    Google Scholar 

  46. Kaygili O, Tatar C, Yakuphanoglu F and Keser S 2013 J. Sol–Gel Sci. Technol. 65 105

    CAS  Google Scholar 

  47. Ji X, Lou W, Wang Q, Ma J, Xu H, Bai Q et al 2012 Int. J. Mol. Sci. 13 5242

    CAS  Google Scholar 

  48. Kaygili O, Keser S, Al Orainy R H, Ates T and Yakuphanoglu F 2014 Mater. Sci. Eng. C 35 239

    CAS  Google Scholar 

  49. Sharifat S, Zolgharnein H, Hamidifalahi A, Enayati-Jazi M and Hamid E 2014 Adv. Mater. Res. 829 594

    Google Scholar 

Download references

Acknowledgement

This study was supported by Firat University Scientific Research Projects Unit (FUBAP) with project number MF.17.45. We are grateful to FUBAP for their support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nihat Tosun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tosun, N., Kurmi, S.Z. & Tosun, G. Microstructure and optical properties of TiO2- and HA-coated Ti6Al7Nb alloy by sol–gel method. Bull Mater Sci 43, 225 (2020). https://doi.org/10.1007/s12034-020-02205-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02205-4

Keywords

Navigation