Skip to main content

Advertisement

Log in

Serine Proteases in Immunity

Cathepsin G and its Dichotomous Role in Modulating Levels of MHC Class I Molecules

  • Review
  • Published:
Archivum Immunologiae et Therapiae Experimentalis Aims and scope

Abstract

Cathepsin G (CatG) is involved in controlling numerous processes of the innate and adaptive immune system. These features include the proteolytic activity of CatG and play a pivotal role in alteration of chemokines as well as cytokines, clearance of exogenous and internalized pathogens, platelet activation, apoptosis, and antigen processing. This is in contrast to the capability of CatG acting in a proteolytic-independent manner due to the net charge of arginine residues in the CatG sequence which interferes with bacteria. CatG is a double-edged sword; CatG is also responsible in pathophysiological conditions, such as autoimmunity, chronic pulmonary diseases, HIV infection, tumor progression and metastasis, photo-aged human skin, Papillon–Lefèvre syndrome, and chronic inflammatory pain. Here, we summarize the latest findings for functional responsibilities of CatG in immunity, including bivalent regulation of major histocompatibility complex class I molecules, which underscore an additional novel role of CatG within the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

APCs:

Antigen-presenting cells

Cat:

Cathepsin

CatG:

Cathepsin G

cDCs:

Conventional dendritic cells

DCs:

Dendritic cells

HIV:

Human immunodeficiency virus

HLA:

Human leukocyte antigen

LF:

Lactoferrin

MHC:

Major histocompatibility complex

NE:

Neutrophil elastase

NETs:

Neutrophil extracellular traps

NK:

Natural killer

PAR:

Protease-activated receptor

PBMCs:

Peripheral blood mononuclear cells

PMSF:

Phenylmethylsulfonyl fluoride

SDF1:

Stromal cell-derived factor 1

TCR:

T cell receptor

TGF-β:

Transforming growth factor beta

Th:

T helper

Tregs:

T regulatory cells

Tregs:

Thymus-derived natural Tregs

T1D:

Type 1 diabetes mellitus

References

  • Adams MN, Ramachandran R, Yau MK et al (2011) Structure, function and pathophysiology of protease activated receptors. Pharmacol Ther 130:248–282

    CAS  PubMed  Google Scholar 

  • Adkison AM, Raptis SZ, Kelley DG et al (2002) Dipeptidyl peptidase I activates neutrophil-derived serine proteases and regulates the development of acute experimental arthritis. J Clin Invest 109:363–371

    CAS  PubMed  PubMed Central  Google Scholar 

  • Adorini L (2003) Tolerogenic dendritic cells induced by vitamin D receptor ligands enhance regulatory T cells inhibiting autoimmune diabetes. Ann NY Acad Sci 987:258–261

    CAS  PubMed  Google Scholar 

  • AhYoung AP, Lin SJ, Gerhardy S et al (2019) An ancient mechanism of arginine-specific substrate cleavage: what’s ‘up’ with NSP4? Biochimie 166:19–26

    CAS  PubMed  Google Scholar 

  • Apps R, Meng Z, Del Prete GQ et al (2015) Relative expression levels of the HLA class-I proteins in normal and HIV-infected cells. J Immunol 194:3594–3600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Apps R, Del Prete GQ, Chatterjee P et al (2016) HIV-1 Vpu mediates HLA-C downregulation. Cell Host Microbe 19:686–695

    CAS  PubMed  PubMed Central  Google Scholar 

  • Balaji KN, Schaschke N, Machleidt W et al (2002) Surface cathepsin B protects cytotoxic lymphocytes from self-destruction after degranulation. J Exp Med 196:493–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Baran K, Ciccone A, Peters C et al (2006) Cytotoxic T lymphocytes from cathepsin B-deficient mice survive normally in vitro and in vivo after encountering and killing target cells. J Biol Chem 281:30485–30491

    CAS  PubMed  Google Scholar 

  • Bartee E, Mansouri M, Hovey Nerenberg BT et al (2004) Downregulation of major histocompatibility complex class I by human ubiquitin ligases related to viral immune evasion proteins. J Virol 78:1109–1120

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bischof J, Westhoff MA, Wagner JE et al (2017) Cancer stem cells: the potential role of autophagy, proteolysis, and cathepsins in glioblastoma stem cells. Tumour Biol 39:1010428317692227

    PubMed  Google Scholar 

  • Borsellino G, Kleinewietfeld M, Di Mitri D et al (2007) Expression of ectonucleotidase CD39 by Foxp3+ Treg cells: hydrolysis of extracellular ATP and immune suppression. Blood 110:1225–1232

    CAS  PubMed  Google Scholar 

  • Burgener SS, Leborgne NG, Snipas SJ et al (2019) Cathepsin G inhibition by serpinb1 and Serpinb6 prevents programmed necrosis in neutrophils and monocytes and reduces GSDMD-Driven inflammation. Cell Rep 27(3646–3656):e5

    Google Scholar 

  • Burster T (2013) Processing and regulation mechanisms within antigen presenting cells: a possibility for therapeutic modulation. Curr Pharm Des 19:1029–1042

    CAS  PubMed  Google Scholar 

  • Burster T, Beck A, Tolosa E et al (2004) Cathepsin G, and not the asparagine-specific endoprotease, controls the processing of myelin basic protein in lysosomes from human B lymphocytes. J Immunol 172:5495–5503

    CAS  PubMed  Google Scholar 

  • Burster T, Macmillan H, Hou T et al (2010) Masking of a cathepsin G cleavage site in vivo contributes to the proteolytic resistance of major histocompatibility complex class II molecules. Immunology 130:436–446

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell EJ, Owen CA (2007) The sulfate groups of chondroitin sulfate- and heparan sulfate-containing proteoglycans in neutrophil plasma membranes are novel binding sites for human leukocyte elastase and cathepsin G. J Biol Chem 282:14645–14654

    CAS  PubMed  Google Scholar 

  • Colbert JD, Cruz FM, Rock KL (2020) Cross-presentation of exogenous antigens on MHC I molecules. Curr Opin Immunol 64:1–8

    CAS  PubMed  Google Scholar 

  • Cooley J, Takayama TK, Shapiro SD et al (2001) The serpin MNEI inhibits elastase-like and chymotrypsin-like serine proteases through efficient reactions at two active sites. Biochemistry 40:15762–15770

    CAS  PubMed  Google Scholar 

  • Cresswell P (2019) A personal retrospective on the mechanisms of antigen processing. Immunogenetics 71:141–160

    PubMed  PubMed Central  Google Scholar 

  • De Angelis RF, De Gassart A, Pforr C et al (2017) MARCH9-mediated ubiquitination regulates MHC I export from the TGN. Immunol Cell Biol 95:753–764

    Google Scholar 

  • Deaglio S, Dwyer KM, Gao W et al (2007) Adenosine generation catalyzed by CD39 and CD73 expressed on regulatory T cells mediates immune suppression. J Exp Med 204:1257–1265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Delgado MB, Clark-Lewis I, Loetscher P et al (2001) Rapid inactivation of stromal cell-derived factor-1 by cathepsin G associated with lymphocytes. Eur J Immunol 31:699–707

    CAS  PubMed  Google Scholar 

  • Dikeakos JD, Atkins KM, Thomas L et al (2010) Small molecule inhibition of HIV-1-induced MHC-I down-regulation identifies a temporally regulated switch in Nef action. Mol Biol Cell 21:3279–3292

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dirk BS, Pawlak EN, Johnson AL et al (2016) HIV-1 Nef sequesters MHC-I intracellularly by targeting early stages of endocytosis and recycling. Sci Rep 6:37021

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eipper S, Steiner R, Lesner A et al (2016) Lactoferrin is an allosteric enhancer of the proteolytic activity of cathepsin G. PLoS ONE 11:e0151509

    PubMed  PubMed Central  Google Scholar 

  • Erpenbeck L, Schon MP (2010) Deadly allies: the fatal interplay between platelets and metastasizing cancer cells. Blood 115:3427–3436

    CAS  PubMed  PubMed Central  Google Scholar 

  • Flaumenhaft R, De Ceunynck K (2017) Targeting PAR1: now what? Trends Pharmacol Sci 38:701–716

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fu Z, Akula S, Thorpe M et al (2020) Potent and broad but not unselective cleavage of cytokines and chemokines by human neutrophil elastase and proteinase 3. Int J Mol Sci 21:E651

    PubMed  Google Scholar 

  • Giese M, Turiello N, Molenda N et al (2016) Exogenous cathepsin G upregulates cell surface MHC class I molecules on immune and glioblastoma cells. Oncotarget 7:74602–74611

    PubMed  PubMed Central  Google Scholar 

  • Gregory AD, Hale P, Perlmutter DH et al (2012) Clathrin pit-mediated endocytosis of neutrophil elastase and cathepsin G by cancer cells. J Biol Chem 287:35341–35350

    CAS  PubMed  PubMed Central  Google Scholar 

  • Gromakova IA, Konovalenko OA (2003) Lysosomal proteolysis: effects of aging and insulin. Biochemistry 68:772–775

    CAS  PubMed  Google Scholar 

  • Gromme M, Uytdehaag FG, Janssen H et al (1999) Recycling MHC class I molecules and endosomal peptide loading. Proc Natl Acad Sci USA 96:10326–10331

    CAS  PubMed  Google Scholar 

  • Grossman WJ, Verbsky JW, Barchet W et al (2004) Human T regulatory cells can use the perforin pathway to cause autologous target cell death. Immunity 21:589–601

    CAS  PubMed  Google Scholar 

  • Grotzke JE, Sengupta D, Lu Q et al (2017) The ongoing saga of the mechanism(s) of MHC class I-restricted cross-presentation. Curr Opin Immunol 46:89–96

    CAS  PubMed  PubMed Central  Google Scholar 

  • Grzywa R, Lesner A, Korkmaz B et al (2019) Proteinase 3 phosphonic inhibitors. Biochimie 166:142–149

    CAS  PubMed  Google Scholar 

  • Hase-Yamazaki T, Aoki Y (1995) Stimulation of human lymphocytes by cathepsin G. Cell Immunol 160:24–32

    CAS  PubMed  Google Scholar 

  • He S, McEuen AR, Blewett SA et al (2003) The inhibition of mast cell activation by neutrophil lactoferrin: uptake by mast cells and interaction with tryptase, chymase and cathepsin G. Biochem Pharmacol 65:1007–1015

    CAS  PubMed  Google Scholar 

  • Herrmann SM, Funke-Kaiser H, Schmidt-Petersen K et al (2001) Characterization of polymorphic structure of cathepsin G gene: role in cardiovascular and cerebrovascular diseases. Arterioscler Thromb Vasc Biol 21:1538–1543

    CAS  PubMed  Google Scholar 

  • Heuberger DM, Schuepbach RA (2019) Protease-activated receptors (PARs): mechanisms of action and potential therapeutic modulators in PAR-driven inflammatory diseases. Thromb J 17:4

    PubMed  PubMed Central  Google Scholar 

  • Hillebrand LE, Reinheckel T (2019) Impact of proteolysis on cancer stem cell functions. Biochimie 166:214–222

    CAS  PubMed  Google Scholar 

  • Hochman JH, Jiang H, Matyus L et al (1991) Endocytosis and dissociation of class I MHC molecules labeled with fluorescent beta-2 microglobulin. J Immunol 146:1862–1867

    CAS  PubMed  Google Scholar 

  • Hof P, Mayr I, Huber R et al (1996) The 1.8 A crystal structure of human cathepsin G in complex with Suc-Val-Pro-PheP-(OPh)2: a Janus-faced proteinase with two opposite specificities. EMBO J 15:5481–5491

    CAS  PubMed  PubMed Central  Google Scholar 

  • Holzen L, Parigiani MA, Reinheckel T (2020) Tumor cell- and microenvironment-specific roles of cysteine cathepsins in mouse models of human cancers. Biochim Biophys Acta Proteins Proteom 1868:140423

    PubMed  Google Scholar 

  • Hu Y, Pham CT (2005) Dipeptidyl peptidase I regulates the development of collagen-induced arthritis. Arthritis Rheum 52:2553–2558

    CAS  PubMed  Google Scholar 

  • Jurewicz MM, Stern LJ (2019) Class II MHC antigen processing in immune tolerance and inflammation. Immunogenetics 71:171–187

    CAS  PubMed  Google Scholar 

  • Kanamori M, Nakatsukasa H, Okada M et al (2016) Induced regulatory T cells: their development, stability, and applications. Trends Immunol 37:803–811

    CAS  PubMed  Google Scholar 

  • Khan M, Carmona S, Sukhumalchandra P et al (2018) Cathepsin G is expressed by acute lymphoblastic leukemia and is a potential immunotherapeutic target. Front Immunol 8:1975

    PubMed  PubMed Central  Google Scholar 

  • Korkmaz B, Horwitz MS, Jenne DE et al (2010) Neutrophil elastase, proteinase 3, and cathepsin G as therapeutic targets in human diseases. Pharmacol Rev 62:726–759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Korkmaz B, Caughey GH, Chapple I et al (2018) Therapeutic targeting of cathepsin C: from pathophysiology to treatment. Pharmacol Ther 190:202–236

    PubMed  Google Scholar 

  • Kramer L, Turk D, Turk B (2017) The future of cysteine cathepsins in disease management. Trends Pharmacol Sci 38:873–898

    CAS  PubMed  Google Scholar 

  • Lindmark A, Persson AM, Olsson I (1990) Biosynthesis and processing of cathepsin G and neutrophil elastase in the leukemic myeloid cell line U-937. Blood 76:2374–2380

    CAS  PubMed  Google Scholar 

  • Lindmark A, Gullberg U, Olsson I (1994) Processing and intracellular transport of cathepsin G and neutrophil elastase in the leukemic myeloid cell line U-937-modulation by brefeldin A, ammonium chloride, and monensin. J Leukoc Biol 55:50–57

    CAS  PubMed  Google Scholar 

  • Liu Y, Liu L (2020) The pro-tumor effect and the anti-tumor effect of neutrophils extracellular traps. Biosci Trends 13:469–475

    PubMed  Google Scholar 

  • Liu X, Tian Y, Meng Z et al (2015) Up-regulation of Cathepsin G in the development of chronic postsurgical pain: an experimental and clinical genetic study. Anesthesiology 123:838–850

    CAS  PubMed  Google Scholar 

  • Loke I, Packer NH, Thaysen-Andersen M (2015) Complementary LC-MS/MS-Based N-Glycan, N-Glycopeptide, and intact N-Glycoprotein profiling reveals unconventional Asn71-glycosylation of human neutrophil cathepsin G. Biomolecules 5:1832–1854

    CAS  PubMed  PubMed Central  Google Scholar 

  • Longhi MS, Moss A, Jiang ZG et al (2017) Purinergic signaling during intestinal inflammation. J Mol Med 95:915–925

    CAS  PubMed  PubMed Central  Google Scholar 

  • Luster AD (1998) Chemokines–chemotactic cytokines that mediate inflammation. N Engl J Med 338:436–445

    CAS  PubMed  Google Scholar 

  • Ma Y, Yang X, Chatterjee V et al (2019) Role of neutrophil extracellular traps and vesicles in regulating vascular endothelial permeability. Front Immunol 10:1037

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mandapathil M, Hilldorfer B, Szczepanski MJ et al (2010) Generation and accumulation of immunosuppressive adenosine by human CD4+CD25highFOXP3+ regulatory T cells. J Biol Chem 285:7176–7186

    CAS  PubMed  Google Scholar 

  • Menkin V (1956) Biochemical aspects of inflammation. Medizinische 15:557–561

    Google Scholar 

  • Meyer-Hoffert U (2009) Neutrophil-derived serine proteases modulate innate immune responses. Front Biosci 14:3409–3418

    CAS  Google Scholar 

  • Miyata J, Tani K, Sato K et al (2007) Cathepsin G: the significance in rheumatoid arthritis as a monocyte chemoattractant. Rheumatol Int 27:375–382

    CAS  PubMed  Google Scholar 

  • Moretta L, Pietra G, Vacca P et al (2016) Human NK cells: from surface receptors to clinical applications. Immunol Lett 178:15–19

    CAS  PubMed  Google Scholar 

  • Nguyen MTN, Shema G, Zahedi RP et al (2018) Protease specificity profiling in a pipet tip using “charge-synchronized” proteome-derived peptide libraries. J Proteome Res 17:1923–1933

    CAS  PubMed  Google Scholar 

  • Overgaard NH, Jung JW, Steptoe RJ et al (2015) CD4+/CD8+ double-positive T cells: more than just a developmental stage? J Leukoc Biol 97:31–38

    PubMed  Google Scholar 

  • Owen CA, Campbell MA, Sannes PL et al (1995) Cell surface-bound elastase and cathepsin G on human neutrophils: a novel, non-oxidative mechanism by which neutrophils focus and preserve catalytic activity of serine proteinases. J Cell Biol 131:775–789

    CAS  PubMed  Google Scholar 

  • Palesch D, Wagner J, Meid A et al (2016) Cathepsin G-mediated proteolytic degradation of MHC class I molecules to facilitate immune detection of human glioblastoma cells. Cancer Immunol Immunother 65:283–291

    CAS  PubMed  Google Scholar 

  • Paul S, Lal G (2017) The molecular mechanism of natural killer cells function and its importance in cancer immunotherapy. Front Immunol 8:1124

    PubMed  PubMed Central  Google Scholar 

  • Penczek A, Burster T (2019) Cell surface cathepsin G can be used as an additional marker to distinguish T cell subsets. Biomed Rep 10:245–249

    CAS  PubMed  PubMed Central  Google Scholar 

  • Penczek A, Sienczyk M, Wirtz CR et al (2016) Cell surface cathepsin G activity differs between human natural killer cell subsets. Immunol Lett 179:80–84

    CAS  PubMed  Google Scholar 

  • Pereira EA, daSilva LL (2016) HIV-1 Nef: taking control of protein trafficking. Traffic 17:976–996

    CAS  PubMed  Google Scholar 

  • Perez-Is L, Ocaña MG, Montes AH et al (2019) The N125S polymorphism in the cathepsin G gene (rs45567233) is associated with susceptibility to osteomyelitis in a Spanish population. PLoS ONE 14:e0220022

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pham CT (2008) Neutrophil serine proteases fine-tune the inflammatory response. Int J Biochem Cell Biol 40:1317–1333

    CAS  PubMed  Google Scholar 

  • Placke T, Orgel M, Schaller M et al (2012) Platelet-derived MHC class I confers a pseudonormal phenotype to cancer cells that subverts the antitumor reactivity of natural killer immune cells. Cancer Res 72:440–448

    CAS  PubMed  Google Scholar 

  • Powers JC, Tanaka T, Harper JW et al (1985) Mammalian chymotrypsin-like enzymes. Comparative reactivities of rat mast cell proteases, human and dog skin chymases, and human cathepsin G with peptide 4-nitroanilide substrates and with peptide chloromethyl ketone and sulfonyl fluoride inhibitors. Biochemistry 24:2048–2058

    CAS  PubMed  Google Scholar 

  • Ramachandran R, Noorbakhsh F, Defea K et al (2012) Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov 11:69–86

    CAS  PubMed  Google Scholar 

  • Raymond WW, Trivedi NN, Makarova A et al (2010) How immune peptidases change specificity: cathepsin G gained tryptic function but lost efficiency during primate evolution. J Immunol 185:5360–5368

    CAS  PubMed  PubMed Central  Google Scholar 

  • Reid PA, Watts C (1990) Cycling of cell-surface MHC glycoproteins through primaquine-sensitive intracellular compartments. Nature 346:655–657

    CAS  PubMed  Google Scholar 

  • Sadeghzadeh M, Bornehdeli S, Mohahammadrezakhani H et al (2020) Dendritic cell therapy in cancer treatment; the state-of-the-art. Life Sci 254:117580. https://doi.org/10.1016/j.lfs.2020.117580

  • Salvesen G, Farley D, Shuman J et al (1987) Molecular cloning of human cathepsin G: structural similarity to mast cell and cytotoxic T lymphocyte proteinases. Biochemistry 26:2289–2293

    CAS  PubMed  Google Scholar 

  • Santambrogio L, Rammensee HG (2019) Contribution of the plasma and lymph degradome and peptidome to the MHC ligandome. Immunogenetics 71:203–216

    CAS  PubMed  Google Scholar 

  • Saul L, Mair I, Ivens A et al (2019) 1,25-Dihydroxyvitamin D3 Restrains CD4(+) T cell priming ability of CD11c(+) dendritic cells by upregulating expression of CD31. Front Immunol 10:600

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schirmbeck R, Melber K, Reimann J (1995) Hepatitis B virus small surface antigen particles are processed in a novel endosomal pathway for major histocompatibility complex class I-restricted epitope presentation. Eur J Immunol 25:1063–1070

    CAS  PubMed  Google Scholar 

  • Schroeder R, Grzywa R, Wirtz CR et al (2020) Application of a novel FAM-conjugated activity-based probe to determine cathepsin G activity intracellularly. Anal Biochem 588:113488

    CAS  PubMed  Google Scholar 

  • Schwartz O, Marechal V, Le Gall S et al (1996) Endocytosis of major histocompatibility complex class I molecules is induced by the HIV-1 Nef protein. Nat Med 2:338–342

    CAS  PubMed  Google Scholar 

  • Selak MA (1994) Cathepsin G and thrombin: evidence for two different platelet receptors. Biochem J 297(Pt 2):269–275

    CAS  PubMed  PubMed Central  Google Scholar 

  • Selak MA, Chignard M, Smith JB (1988) Cathepsin G is a strong platelet agonist released by neutrophils. Biochem J 251:293–299

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shen L, Sigal LJ, Boes M et al (2004) Important role of cathepsin S in generating peptides for TAP-independent MHC class I crosspresentation in vivo. Immunity 21:155–165

    CAS  PubMed  Google Scholar 

  • Son ED, Shim JH, Choi H et al (2012) Cathepsin G inhibitor prevents ultraviolet B-Induced photoaging in hairless mice via inhibition of fibronectin fragmentation. Dermatology 224:352–360

    CAS  PubMed  Google Scholar 

  • Sorensen OE, Clemmensen SN, Dahl SL et al (2014) Papillon-Lefevre syndrome patient reveals species-dependent requirements for neutrophil defenses. J Clin Invest 124:4539–4548

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starkey PM, Barrett AJ (1976a) Human cathepsin G Catalytic and immunological properties. Biochem J 155:273–278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Starkey PM, Barrett AJ (1976b) Neutral proteinases of human spleen. Purification and criteria for homogeneity of elastase and cathepsin G. Biochem J 155:255–263

    CAS  PubMed  PubMed Central  Google Scholar 

  • Stoeckle C, Sommandas V, Adamopoulou E et al (2009) Cathepsin G is differentially expressed in primary human antigen-presenting cells. Cell Immunol 255:41–45

    CAS  PubMed  Google Scholar 

  • Thorpe M, Fu Z, Chahal G et al (2018) Extended cleavage specificity of human neutrophil cathepsin G: a low activity protease with dual chymase and tryptase-type specificities. PLoS ONE 13:e0195077

    PubMed  PubMed Central  Google Scholar 

  • van ThansStigt T, Akko JI, Niehrs A et al (2019) Primary HIV-1 strains use Nef to downmodulate HLA-E surface expression. J Virol 93:e00719–e819

    Google Scholar 

  • Vaughan-Thomas A, Gilbert SJ, Duance VC (2000) Elevated levels of proteolytic enzymes in the aging human vitreous. Invest Ophthalmol Vis Sci 41:3299–3304

    CAS  PubMed  Google Scholar 

  • Vissers MC, George PM, Bathurst IC et al (1988) Cleavage and inactivation of alpha 1-antitrypsin by metalloproteinases released from neutrophils. J Clin Invest 82:706–711

    CAS  PubMed  PubMed Central  Google Scholar 

  • Watorek W, van Halbeek H, Travis J (1993) The isoforms of human neutrophil elastase and cathepsin G differ in their carbohydrate side chain structures. Biol Chem Hoppe Seyler 374:385–393

    CAS  PubMed  Google Scholar 

  • Whiteside TL (2014) Regulatory T cell subsets in human cancer: are they regulating for or against tumor progression? Cancer Immunol Immunother 63:67–72

    CAS  PubMed  Google Scholar 

  • Wyczalkowska-Tomasik A, Paczek L (2012) Cathepsin B and L activity in the serum during the human aging process: cathepsin B and L in aging. Arch Gerontol Geriatr 55:735–738

    CAS  PubMed  Google Scholar 

  • Yamazaki T, Aoki Y (1997) Cathepsin G binds to human lymphocytes. J Leukoc Biol 61:73–79

    CAS  PubMed  Google Scholar 

  • Zamolodchikova TS, Tolpygo SM, Svirshchevskaya EV (2020) Cathepsin G-not only inflammation: the immune protease can regulate normal physiological processes. Front Immunol 11:411

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang X, Luo S, Wang M et al (2020) Cysteinyl cathepsins in cardiovascular diseases. Biochim Biophys Acta Proteins Proteom 1868:140360

    CAS  PubMed  Google Scholar 

  • Zheng Y, Lai W, Wan M et al (2012) Expression of cathepsins in human skin photoaging. Skin Pharmacol Physiol 24:10–21

    Google Scholar 

  • Zou F, Schäfer N, Palesch D et al (2011) Regulation of cathepsin G reduces the activation of proinsulin-reactive T cells from type 1 diabetes patients. PLoS ONE 6:e22815

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

No funding was received.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Burster.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Burster, T., Knippschild, U., Molnár, F. et al. Cathepsin G and its Dichotomous Role in Modulating Levels of MHC Class I Molecules. Arch. Immunol. Ther. Exp. 68, 25 (2020). https://doi.org/10.1007/s00005-020-00585-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00005-020-00585-3

Keywords

Navigation