Skip to main content

Advertisement

Log in

Some information inequalities for statistical inference

  • Published:
Annals of the Institute of Statistical Mathematics Aims and scope Submit manuscript

Abstract

In this paper, we first describe the generalized notion of Cramer–Rao lower bound obtained by Naudts (J Inequal Pure Appl Math 5(4), Article 102, 2004) using two families of probability density functions: the original model and an escort model. We reinterpret the results in Naudts (2004) from a statistical point of view and obtain some interesting examples in which this bound is attained. Further, we obtain information inequalities which generalize the classical Bhattacharyya bounds in both regular and non-regular cases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Amari, S. (1985). Differential-geometrical methods in statistics, Lecture notes in statistics, Vol. 28. New York: Springer.

  • Amari, S., Ohara, A., Matsuzoe, H. (2012). Geometry of deformed exponential families: Invariant, dually flat and conformal geometries. Physica A: Statistical Mechanics and Its Applications, 391, 4308–4319.

    Article  MathSciNet  Google Scholar 

  • Chapman, D. G., Robbins, H. (1951). Minimum variance estimation without regularity assumptions. Annals of Mathematical Statistics, 22(4), 581–586.

    Article  MathSciNet  Google Scholar 

  • Cramer, H. (1946). A contribution to the theory of statistical estimation. Scandinavian Actuarial Journal, 1, 85–94.

    Article  MathSciNet  Google Scholar 

  • Fraser, D. A. S., Guttman, I. (1952). Bhattacharyya bounds without regularity assumptions. Annals of Mathematical Statistics, 23(4), 629–632.

    Article  MathSciNet  Google Scholar 

  • Hammersley, J. M. (1950). On estimating restricted parameters. Journal of the Royal Statistical Society Series B, 12(2), 192–240.

    MathSciNet  MATH  Google Scholar 

  • Harsha, K. V., Subrahamanian Moosath, K. S. (2015). Dually flat geometries of the deformed exponential family. Physica A: Statistical Mechanics and its Applications, 433, 136–147.

    Article  MathSciNet  Google Scholar 

  • Khatri, C. G. (1980). Unified treatment of Cramér–Rao bound for the nonregular density functions. Journal of Statistical Planning and Inference, 4, 75–79.

    Article  MathSciNet  Google Scholar 

  • Koike, K. (2002). On the inequality of Kshirsagar. Communications in Statistics: Theory and Methods, 31, 1617–1627.

    Article  MathSciNet  Google Scholar 

  • Kshirsagar, A. M. (2000). An extension of the Chapman–Robbins inequality. Journal of the Indian Statistical Association, 38, 355–362.

    MathSciNet  Google Scholar 

  • Lehmann, E. L., Casella, G. (1998). Theory of point estimation, 2nd ed. New York: Springer.

  • Matsuzoe, H., Henmi, M. (2013). Hessian structures on deformed exponential families. In F. Nielsen, F. Barbaresco (Eds.), Geometric science of information, Lecture notes in computer science, Vol. 8085, pp. 275–282. Berlin: Springer.

  • Naudts, J. (2004). Estimators, escort probabilities, and \(\phi \)-exponential families in statistical physics. Journal of Inequalities in Pure and Applied Mathematics, 5(4), Article 102.

  • Qin, M., Nayak, T. K. (2008). Kshirsagar-type lower bounds for mean squared error of prediction. Communications in Statistics: Theory and Methods, 37, 861–872.

    Article  MathSciNet  Google Scholar 

  • Rao, C. R. (1945). Information and the accuracy attainable in the estimation of statistical parameters. Bulletin of the Calcutta Mathematical Society, 37, 81–89.

    MathSciNet  MATH  Google Scholar 

  • Vincze, I. (1979). On the Cramer–Frechet–Rao inequality in the non-regular case. In Contributions to statistics, The Jaroslav Hajek Memorial Volume, pp. 253–262. Prague: Academia.

Download references

Acknowledgements

The first author is supported by the Postdoctoral Fellowship from Indian Institute of Technology Bombay, Mumbai, India.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. V. Harsha.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

Lemma 1

Let X be a random variable with pdf

$$\begin{aligned} f(x,\theta )=\mathcal {N}(0,\theta ^{2})=\frac{1}{\sqrt{2 \pi } \theta } e^{\frac{-x^{2}}{2\theta ^{2}}} , \quad x \in \mathbb {R} \quad \mathrm {and } \quad \theta >0. \end{aligned}$$
(105)

Consider a pdf

$$\begin{aligned} g(x,\theta )=\frac{1}{\sqrt{2 \pi } \theta } \left( \frac{3}{4} + \frac{x^{2}}{4 \theta ^{2}}\right) e^{\frac{-x^{2}}{2\theta ^{2}}}, \quad x \in \mathbb {R}. \end{aligned}$$
(106)

Then the family \(\{ g_{\theta } \mid \theta >0\}\) satisfies Assumptions (18) and (19).

Proof

Since \(\mathrm {supp}(g_{\theta }) = \mathrm {supp}(f_{\theta })\), \( P_{g_{\theta }} \) is absolutely continuous with respect to \( P_{f_{\theta }} \) for all \(\theta \in \varTheta \). Hence, \(\{ g_{\theta } \mid \theta >0\}\) satisfies Assumption (18).

To show \(\mathcal {U}_{f} \subseteq \mathcal {U}_{g}\), let \(U(X) \in \mathcal {U}_{f}\). Then we have for all \(\theta \in \varTheta \),

$$\begin{aligned} E_{f_{\theta }}(U) = \int _{x \in \mathbb {R}} U(t) \; \exp (-t^{2}/2\theta ^{2}) \; \hbox {d}t=0. \end{aligned}$$
(107)

By differentiating (107) both sides with respect to \(\theta \), we get

$$\begin{aligned} \int _{x \in \mathbb {R}} U(t) \; t^{2} \; \exp (-t^{2}/2\theta ^{2}) \; \hbox {d}t=0. \end{aligned}$$
(108)

Now from Eqs. (107) and (108), it follows that

$$\begin{aligned} E_{g_{\theta }}(U)= & {} \frac{3}{4\sqrt{2 \pi } \theta } \int _{x \in \mathbb {R}} U(t) \; \exp (-t^{2}/2\theta ^{2}) \; \hbox {d}t \end{aligned}$$
(109)
$$\begin{aligned}&+\,\frac{3}{4\sqrt{2 \pi } \theta ^{3}} \int _{x \in \mathbb {R}} U(t) \; t^{2} \; \exp (-t^{2}/2\theta ^{2}) \; \hbox {d}t \end{aligned}$$
(110)
$$\begin{aligned}= & {} 0. \end{aligned}$$
(111)

Hence, \(\{ g_{\theta } \mid \theta >0\}\) satisfies Assumption (19). \(\square \)

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Harsha, K.V., Subramanyam, A. Some information inequalities for statistical inference. Ann Inst Stat Math 72, 1237–1256 (2020). https://doi.org/10.1007/s10463-019-00725-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10463-019-00725-3

Keywords

Navigation