Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Original Article
  • Published:

Effect of plasticizer on the ion-conductive and dielectric behavior of poly(ethylene carbonate)-based Li electrolytes

Abstract

Solid polymer electrolytes consisting of CO2-derived poly(ethylene carbonate) (PEC), LiPF6, and plasticizers (glycerol or 1-ethyl-3-methylimidazolium bis(trifluoromethane sulfonyl)imide, EMImTFSI) were prepared by a simple casting method, and their dielectric relaxation behavior was evaluated using broadband electric spectroscopy (BES), which clarified the correlation between the polymer motion and ionic conduction. From the DSC and BES results, it was revealed that the addition of plasticizer decreased the glass transition temperature and increased the dc conductivity (σdc) of the PEC electrolyte. The BES results also revealed that the plasticizer increased the segmental motion of PEC and improved σdc, and the plasticizing effect of EMImTFSI on the PEC electrolyte was larger than that of glycerol. From the results of the Walden plot and fragility analysis, it was expected that the degree of decoupling ε and fragility m would increase with the addition of plasticizer because these plasticizers weaken the interactions between the PEC chains and Li ions in the electrolyte.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Tarascon J-M, Armand M. Issues and challenges facing rechargeable lithium batteries. Nature. 2001;414:359–67.

    Article  CAS  PubMed  Google Scholar 

  2. Muldoon J, Bucur CB, Boaretto N, Gregory T, Di Noto V. Polymers: Opening doors to future batteries. Polym Rev. 2015;55:208–46.

    Article  CAS  Google Scholar 

  3. Wright PV. Electrical conductivity in ionic complexes of poly(ethylene oxide). Br Polym J. 1975;7:319–27.

    Article  CAS  Google Scholar 

  4. Armand M, Chabagno J, Duclot M. Poly-ethers as solid electrolytes. In: Fast Ion Transport in Solids: Electrodes and Electrolytes, Proc. Int. Conf. Fast Ion Transp. Solids, Electrodes, Electrolytes. (North Holland Publishers, USA, 1979).

  5. Kano K, Takahashi Y, Furukawa T. Molecular weight dependence of ion-mode relaxation and dc conduction in polypropylene oxide complexed with LiClO4. Jpn J Appl Phys. 2001;40:3246–51.

    Article  CAS  Google Scholar 

  6. Furukawa T, Mukasa Y, Suzuki T, Kano K. Microphase separation and ion-conduction mechanisms in polypropylene oxide/lithium perchlorate (LiClO4) complexes. J Polym Sci Part B Polym Phys. 2002;40:613–22.

    Article  CAS  Google Scholar 

  7. Yoshida K, Manabe H, Takahashi Y, Furukawa T. Correlation between ionic and molecular dynamics in the liquid state of polyethylene oxide/lithium perchlorate complexes. Electrochim Acta. 2011;57:139–46.

    Article  CAS  Google Scholar 

  8. Fan F, Wang Y, Sokolov AP. Ionic transport, microphase separation, and polymer relaxation in poly(propylene glycol) and lithium perchlorate mixtures. Macromolecules. 2013;46:9380–9.

    Article  CAS  Google Scholar 

  9. Gray FM. Solid polymer electrolytes: fundamentals and technological applications. Wiley; 1991.

  10. Kelly I, Owen JR, Steele BCH. Mixed polyether lithium-ion conductors. J Electroanal Chem Interfacial Electrochem. 1984;168:467–78.

    Article  CAS  Google Scholar 

  11. Forsyth M, Meakin P, MacFarlane DR, Hill AJ. Free volume and conductivity of plasticized polyether-urethane solid polymer electrolytes. J Phys Condens Matter. 1995;7:7601–17.

    Article  CAS  Google Scholar 

  12. Frech R, Chintapalli S. Effect of propylene carbonate as a plasticizer in high molecular weight PEO-LiCF3SO3 electrolytes. Solid State Ion. 1996;85:61–6.

    Article  CAS  Google Scholar 

  13. Kim YT, Smotkin ES. The effect of plasticizers on transport and electrochemical properties of PEO-based electrolytes for lithium rechargeable batteries. Solid State Ion. 2002;149:29–37.

    Article  CAS  Google Scholar 

  14. Armand M, Endres F, MacFarlane DR, Ohno H, Scrosati B. Ionic-liquid materials for the electrochemical challenges of the future. Nat Mater. 2009;8:621–9.

    Article  CAS  PubMed  Google Scholar 

  15. Scrosati B, Hassoun J, Sun YK. Lithium-ion batteries. A look into the future. Energy Environ Sci. 2011;4:3287–95.

    Article  CAS  Google Scholar 

  16. Macfarlane DR, Tachikawa N, Forsyth M, Pringle JM, Howlett PC, Elliott GD, et al. Energy applications of ionic liquids. Energy Environ Sci. 2014;7:232–50.

    Article  CAS  Google Scholar 

  17. Shin JH, Henderson WA, Passerini S. Ionic liquids to the rescue? Overcoming the ionic conductivity limitations of polymer electrolytes. Electrochem Commun. 2003;5:1016–20.

    Article  CAS  Google Scholar 

  18. Polu AR, Rhee HW. Ionic liquid doped PEO-based solid polymer electrolytes for lithium-ion polymer batteries. Int J Hydrog Energy. 2017;42:7212–9.

    Article  CAS  Google Scholar 

  19. Dragunski DC, Pawlicka A. Starch based solid polymeric electrolytes. Mol Cryst Liq Cryst. 2002;374:561–8.

    Article  CAS  Google Scholar 

  20. Marcondes RFMS, D’Agostini PS, Ferreira J, Girotto EM, Pawlicka A, Dragunski DC. Amylopectin-rich starch plasticized with glycerol for polymer electrolyte application. Solid State Ion. 2010;181:586–91.

    Article  CAS  Google Scholar 

  21. Sudhakar YN, Selvakumar M. Lithium perchlorate doped plasticized chitosan and starch blend as biodegradable polymer electrolyte for supercapacitors. Electrochim Acta. 2012;78:398–405.

    Article  CAS  Google Scholar 

  22. Inoue S, Koinuma H, Tsuruta T. Copolymerization of carbon dioxide and epoxide. J Polym Sci Part B Polym Lett. 1969;7:287–92.

    Article  CAS  Google Scholar 

  23. Acemoglu M, Nimmerfall F, Bantle S, Stoll GH. Poly(ethylene carbonate)s, part I: Syntheses and structural effects on biodegradation. J Control Release. 1997;49:263–76.

    Article  CAS  Google Scholar 

  24. Darensbourg DJ. Making plastics from carbon dioxide: Salen metal complexes as catalysts for the production of polycarbonates from epoxides and CO2. Chem Rev. 2007;107:2388–410.

    Article  CAS  PubMed  Google Scholar 

  25. Tominaga Y, Nanthana V, Tohyama D. Ionic conduction in poly(ethylene carbonate)-based rubbery electrolytes including lithium salts. Polym J. 2012;44:1155–8.

    Article  CAS  Google Scholar 

  26. Tominaga Y, Yamazaki K. Fast Li-ion conduction in poly(ethylene carbonate)-based electrolytes and composites filled with TiO2 nanoparticles. Chem Commun. 2014;50:4448–50.

    Article  CAS  Google Scholar 

  27. Tominaga Y, Yamazaki K, Nanthana V. Effect of anions on lithium ion conduction in poly(ethylene carbonate)-based polymer electrolytes. J Electrochem Soc. 2015;162:A3133–6.

    Article  CAS  Google Scholar 

  28. Kimura K, Yajima M, Tominaga Y. A highly-concentrated poly(ethylene carbonate)-based electrolyte for all-solid-state Li battery working at room temperature. Electrochem Commun. 2016;66:46–8.

    Article  CAS  Google Scholar 

  29. Tominaga Y. Ion-conductive polymer electrolytes based on poly(ethylene carbonate) and its derivatives. Polym J. 2017;49:291–9.

    Article  CAS  Google Scholar 

  30. Kimura K, Motomatsu J, Tominaga Y. Correlation between solvation structure and ion-conductive behavior of concentrated poly(ethylene carbonate)-based electrolytes. J Phys Chem C. 2016;120:12385–91.

    Article  CAS  Google Scholar 

  31. Kimura K, Tominaga Y. Understanding electrochemical stability and lithium ion‐dominant transport in concentrated poly(ethylene carbonate) electrolyte. ChemElectroChem. 2018;5:4008–14.

    Article  CAS  Google Scholar 

  32. Peng S, An Y, Chen C, Fei B, Zhuang Y, Dong L. Thermal degradation kinetics of uncapped and end-capped poly(propylene carbonate). Polym Degrad Stab. 2003;80:141–7.

    Article  CAS  Google Scholar 

  33. Costa L, Camino G, Cameron GG, Qureshi MY, Gad AM. Thermal and thermooxidative degradation of poly(ethylene oxide)-metal salt complexes. Macromolecules. 1992;25:5512–8.

    Article  CAS  Google Scholar 

  34. Tominaga Y, Kinno Y, Kimura K. An end-capped poly(ethylene carbonate)-based concentrated electrolyte for stable cyclability of lithium battery. Electrochim Acta. 2019;302:286–90.

    Article  CAS  Google Scholar 

  35. Zhou D, Zhou R, Chen C, Yee WA, Kong J, Ding G, et al. Non-volatile polymer electrolyte based on poly(propylene carbonate), Ionic liquid, and lithium perchlorate for electrochromic devices. J Phys Chem B. 2013;117:7783–9.

    Article  CAS  PubMed  Google Scholar 

  36. Sylla S, Sanchez J-Y, Armand M. Electrochemical study of linear and crosslinked POE-based polymer electrolytes. Electrochim Acta. 1992;37:1699–701.

    Article  CAS  Google Scholar 

  37. Nabilah MRN, Alwi MA, Su’ait MS, Imperiyka M, Hanifah SA, Ahmad A, et al. Effect of ionic liquid 1-butyl-3-methylimidazolium bis(trifluoromethanesulfonyl)imide on the properties of poly(glycidyl methacrylate) based solid polymer electrolytes. Russ J Electrochem. 2016;52:362–73.

    Article  CAS  Google Scholar 

  38. Di Noto V, Giffin GA, Vezzù K, Piga M, Lavina S. In: Solid state proton conductors. John Wiley & Sons, Ltd; Chichester, UK. 2012. p. 109–83.

  39. Furukawa T, Imura M, Yuruzume H. Broad-band conductive spectra of polypropylene oxide complexed with LiClO4. Jpn J Appl Phys. 1997;36:1119–25.

    Article  CAS  Google Scholar 

  40. Wang Y, Fan F, Agapov AL, Saito T, Yang J, Yu X, et al. Examination of the fundamental relation between ionic transport and segmental relaxation in polymer electrolytes. Polymer. 2014;55:4067–76.

    Article  CAS  Google Scholar 

  41. Motomatsu J, Kodama H, Furukawa T, Tominaga Y. Dielectric relaxation behavior of a poly(ethylene carbonate)-lithium bis-(trifl uoromethanesulfonyl) imide electrolyte. Macromol Chem Phys. 2015;216:1660–5.

    Article  CAS  Google Scholar 

  42. Motomatsu J, Kodama H, Furukawa T, Tominaga Y. Dielectric relaxation and ionic transport in poly(ethylene carbonate)-based electrolytes. Polym Adv Technol. 2017;28:362–6.

    Article  CAS  Google Scholar 

  43. Wang Y, Fan F, Agapov AL, Yu X, Hong K, Mays J, et al. Design of superionic polymers—new insights from Walden plot analysis. Solid State Ion. 2014;262:782–4.

    Article  CAS  Google Scholar 

  44. Videa M, Angell CA. Glass formation, ionic conductivity, and conductivity/viscosity decoupling, in LiAlCl4 + LiClO4 and LiAlCl4 + LiAlCl3·imide solutions. J Phys Chem B. 1999;103:4185–90.

    Article  CAS  Google Scholar 

  45. Kunal K, Robertson CG, Pawlus S, Hahn SF, Sokolov AP. Role of chemical structure in fragility of polymers: a qualitative picture. Macromolecules. 2008;41:7232–8.

    Article  CAS  Google Scholar 

  46. Agapov AL, Sokolov AP. Decoupling ionic conductivity from structural relaxation: a way to solid polymer electrolytes? Macromolecules. 2011;44:4410–4.

    Article  CAS  Google Scholar 

  47. Wang Y, Agapov AL, Fan F, Hong K, Yu X, Mays J, et al. Decoupling of ionic transport from segmental relaxation in polymer electrolytes. Phys Rev Lett. 2012;108:1–5.

    Google Scholar 

Download references

Acknowledgements

This work was supported financially by a Grant-in-Aid for Scientific Research (B) of JSPS KAKENHI (No. 16H04199), Japan. One of the authors (KK) acknowledges financial support from the Tobitate! Young Ambassador Program, Japan for her study abroad.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoichi Tominaga.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kobayashi, K., Pagot, G., Vezzù, K. et al. Effect of plasticizer on the ion-conductive and dielectric behavior of poly(ethylene carbonate)-based Li electrolytes. Polym J 53, 149–155 (2021). https://doi.org/10.1038/s41428-020-00397-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41428-020-00397-4

This article is cited by

Search

Quick links