Skip to content
Licensed Unlicensed Requires Authentication Published by De Gruyter (O) August 19, 2020

Adsorptive removal of PAR and Arsenazo-III from radioactive waste solutions by modified sugarcane bagasse as eco-friendly sorbent

  • Ezzat A. Abdel-Galil EMAIL logo , Marwa A. Eid and Ahmed M. Shahr El-Din
From the journal Radiochimica Acta

Abstract

In this paper, sugarcane bagasse (SCB) was modified using phosphoric acid. The modified sugarcane bagasse (MSCB) has been used to remove 4-(2-pyridylazo)resorcinol (PAR) and Arsenazo-III (Ar-III) from liquid radioactive waste. The surface morphology and functional groups of the MSCB were studied using scanning electron microscopy (SEM), X-ray diffraction (XRD), fourier transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). Adsorption ability of MSCB has been tested by batch mode through some relevant factors like initial pH, reaction time, initial coloring reagents (PAR and Ar-III) concentrations, and adsorbent weight. At adsorption equilibrium time 180 min and pH values of 3 and 1 for PAR and Ar-III; the maximum removal (%) for both PAR and Ar-III were 93 and 57%, respectively. The adsorption isotherm data are representative well to Freundlich isotherm model. The mean free energy of adsorption, E (kJ/mol), has been estimated as 5.75 and 2.28 kJ/mol for PAR and Ar-III, respectively, which suggests that the adsorption occurred physically. The maximum adsorption capacity of MSCB for PAR and Ar-III is 96.62 and 15.18 mg/g, respectively. The adsorption kinetics are better fitted by the pseudo-second-order model. The partial film along with intra-particle diffusion controlled the diffusion of coloring reagents from the solution bulk to the particle interior pores. Application of MSCB for removing PAR and Ar-III from simulated liquid radioactive waste containing U(VI) and Th(VI) ions has been achieved successfully.


Corresponding author: Ezzat A. Abdel-Galil, Hot Laboratories and Waste Management Center, Egyptian Atomic Energy Authority, P.O. Box 13759, Cairo, Egypt, E-mail:

  1. Author contribution: All the authors have accepted responsibility for the entire content of this submitted manuscript and approved submission.

  2. Research funding: None declared.

  3. Conflict of interest statement: The authors declare no conflicts of interest regarding this article.

References

1. Askalani, P., Mikhail, F. M. Thorium(IV) and uranium(VI) complexes with some heterocyclic azo dyes in absolute ethanol. J. Radioanal. Nucl. Chem. 1983, 76, 27; https://doi.org/10.1007/bf02519652.Search in Google Scholar

2. Hamed, M. M., Aglan, R. F. Removal of Arsenazo-III from liquid radioactive waste by cloud point extraction. J. Radioanal. Nucl. Chem. 2019, 321, 917; https://doi.org/10.1007/s10967-019-06669-5.Search in Google Scholar

3. Júnior, O. K., Gurgel, L. V. A., De Freitas, R. P., Gil, L. F. Adsorption of Cu(II), Cd(II), and Pb(II) from aqueous single metal solutions by mercerized cellulose and mercerized sugarcane bagasse chemically modified with EDTA dianhydride (EDTAD). Carbohydr. Polym. 2009, 77, 643; https://doi.org/10.1016/j.carbpol.2009.02.016.Search in Google Scholar

4. Abou-Zeid, R. E., Awwad, N. S., Nabil, S., Salama, A., Youssef, M. A. Oxidized alginate/gelatin decorated silver nanoparticles as new nanocomposite for dye adsorption. Int. J. Biol. Macromol. 2019, 141, 1280; https://doi.org/10.1016/j.ijbiomac.2019.09.076.Search in Google Scholar PubMed

5. Moawed, E. A., El-Shahat, M. F. Equilibrium, kinetic and thermodynamic studies for removal of triphenyl methane dyes from wastewater using iodopolyurethane powder. J. Taibah Univ. Sci. 2016, 10, 46; https://doi.org/10.1016/j.jtusci.2015.03.008.Search in Google Scholar

6. Ahmed, I. M., Aglan, R. F., Hamed, M. M. Removal of Arsenazo-III and Thorin from radioactive waste solutions by adsorption onto low-cost adsorbent. J. Radioanal. Nucl. Chem. 2017, 314, 2253; https://doi.org/10.1007/s10967-017-5586-2.Search in Google Scholar

7. Razi, M. A. M., Al-Gheethi, A., ZA, I. A. Removal of heavy metals from textile wastewater using sugarcane bagasse activated carbon. Int. J. Eng. Tech. 2018, 7, 112; https://doi.org/10.14419/ijet.v7i4.30.22066.Search in Google Scholar

8. Deo, I., Chandra, V., Kumar, N. Adsorptive removal of Auramine-O: kinetic and equilibrium study. J. Hazard Mater. 2007, 143, 386; https://doi.org/10.1016/j.jhazmat.2006.09.059.10.1016/j.jhazmat.2006.09.059Search in Google Scholar PubMed

9. Hamada, Y. M. Water resources reallocation in Upper and Middle Egypt. EWRA Eur. Water 2011, 33, 33.Search in Google Scholar

10. Varma, A. K., Mondal, P. Pyrolysis of sugarcane bagasse in semi batch reactor: effects of process parameters on product yields and characterization of products. Ind. Crops Prod. 2017, 95, 704; https://doi.org/10.1016/j.indcrop.2016.11.039.Search in Google Scholar

11. Abo-State, M. A., Ragab, A. M. E., EL-Gendy, N. Sh., Farahat, L. A., Madian, H. R. Effect of different pretreatments on Egyptian sugar-cane bagasse saccharification and bioethanol production. Egypt. J. Petrol. 2013, 22, 161; https://doi.org/10.1016/j.ejpe.2012.09.007.Search in Google Scholar

12. Boopathy, R. Use of post-harvest sugarcane residue in coastal reclamation: a feasibility study. Sugar Cane Int. Jan/Feb 2004, 9.Search in Google Scholar

13. Malek, N. A. N. N., Yusof, M. H., Kamaru, A. A. Simultaneous action of surfactant modified sugarcane bagasse: adsorbent and antibacterial agent. Malays. J. Fund. Appl. Sci. 2019, 15, 32; https://doi.org/10.11113/mjfas.v15n2019.1203.Search in Google Scholar

14. Azhar, S., Suhardy, S. D., Kasim, F. H., Saleh, M. N. Isolation and characterization of pulp from sugarcane bagasse and rice straw. J. Nucl. Relat. Technol. 2007, 4, 109.Search in Google Scholar

15. Malek, N. A. N. N., Sihat, N. A., Khalifa, M. A. S., Kamaru, A. A., Jani, N. S. A., Sani, N. S. Adsorption of acid orange 7 by cetylpyridinium bromide modified sugarcane bagasse. J. Technol. 2014, 78, 97; https://doi.org/10.11113/jt.v78.7276.Search in Google Scholar

16. Shahr El-Din, A. M., Monir, T., Sayed, M. A. Nano-sized Prussian blue immobilized costless agro-industrial waste for the removal of cesium-137 ions. Environ. Sci. Pollut. Res. 2019, 26, 25550; https://doi.org/10.1007/s11356-019-05851-2.Search in Google Scholar PubMed

17. Buthiyappan, A., Gopalan, J., Abdul Raman, A. Synthesis of iron oxides impregnated green adsorbent from sugarcane bagasse: characterization and evaluation of adsorption efficiency. J. Environ. Manag. 2019, 249, 109323; https://doi.org/10.1016/j.jenvman.2019.109323.Search in Google Scholar PubMed

18. Sharma, P., Kaur, H. Sugarcane bagasse for the removal of erythrosin B and methylene blue from aqueous waste. Appl. Water Sci. 2011, 1, 135; https://doi.org/10.1007/s13201-011-0018-x.Search in Google Scholar

19. Moloukhia, H., Hegazy, W. S., Abdel-Galil, E. A., Mahrous, S. S. Removal of Eu3+, Ce3+, Sr2+, and Cs+ ions from radioactive waste solutions by modified activated carbon prepared from coconut shells. Chem. Ecol. 2016, 32, 324; https://doi.org/10.1080/02757540.2016.1139089.Search in Google Scholar

20. Langmuir, I. The adsorption of gases on plane surfaces of glass, mica and platinum. J. Am. Chem. Soc. 1918, 40, 1361; https://doi.org/10.1021/ja02242a004.Search in Google Scholar

21. Freundlich, H. M. F. Over the adsorption in solution. J. Phys. Chem. 1906, 57, 385.Search in Google Scholar

22. Dubinin, M. M., Zaverina, E. D., Radushkevich, L. V. Sorption and structure of active carbons I. Adsorption of organic vapors. Zh. Fiz. Khim. 1947, 21, 1351.Search in Google Scholar

23. Abdel-Galil, E. A., Hassan, R. S., Eid, M. A. Assessment of nano-sized stannic silicomolybdate for the removal of 137Cs, 90Sr, and 141Ce radionuclides from radioactive waste solutions. Appl. Radiat. Isot. 2019, 148, 91; https://doi.org/10.1016/j.apradiso.2019.03.029.Search in Google Scholar PubMed

24. Hamed, M. M., Rizk, H. E., Ahmed, I. M. Adsorption behavior of zirconium and molybdenum from nitric acid medium using low-cost adsorbent. J. Mol. Liq. 2018, 249, 361; https://doi.org/10.1016/j.molliq.2017.11.049.Search in Google Scholar

25. Yu, J. X., Chi, R. A., Guo, J., Zhang, Y. F., Xu, Z. G., Xiao, C. Q. Desorption and photodegradation of methylene blue from modified sugarcane bagasse surface by acid TiO2 hydrosol. Appl. Surf. Sci. 2012, 258, 4085; https://doi.org/10.1016/j.apsusc.2011.12.106.Search in Google Scholar

26. Abdel-Galil, E. A., Moloukhia, H., Abdel-Khalik, M., Mahrous, S. S. Synthesis and physico-chemical characterization of cellulose/HO7Sb3 nanocomposite as adsorbent for the removal of some radionuclides from aqueous solutions. Appl. Radiat. Isot. 2018, 140, 363; https://doi.org/10.1016/j.apradiso.2018.07.022.Search in Google Scholar

27. Chowdhury, S., Chakraborty, S., Saha, P. Biosorption of basic green 4 from aqueous solution by Ananas comosus (pineapple) leaf powder. Colloids Surf. B Biointerfaces 2011, 84, 520; https://doi.org/10.1016/j.colsurfb.2011.02.009.Search in Google Scholar

28. Kannan, N., Sundaram, M. M. Kinetics and mechanism of removal of methylene blue by adsorption on various carbons – a comparative study. Dyes Pigments 2001, 51, 25; https://doi.org/10.1016/s0143-7208(01)00056-0.Search in Google Scholar

29. Mulinari, D. R., Voorwald, H. J. C., Cioffi, M. O. H., Da Silva, M. L. C. P., Luz, S. M. Preparation and properties of HDPE/sugarcane bagasse cellulose composites obtained for thermokinetic mixer. Carbohydr. Polym. 2009, 75, 317; https://doi.org/10.1016/j.carbpol.2008.07.028.Search in Google Scholar

30. Hamed, M. M., Shahr El-Din, A. M., Abdel-Galil, E. A. Nanocomposite of polyaniline functionalized Tafa synthesis, characterization, and application as a novel sorbent for selective removal of Fe(III). J. Radioanal. Nucl. Chem. 2019, 322, 663; https://doi.org/10.1007/s10967-019-06733-0.Search in Google Scholar

31. Nayan, N. H. M., Razak, S. I. A., Rahman, W. A. W. A., Majid, R. A. Effects of mercerization on the properties of paper produced from malaysian pineapple leaf fiber. Int. J. Eng. Technol. 2013, 13, 1.Search in Google Scholar

32. Maniruzzaman, M., Rahman, M. A., Gafur, M. A., Fabritius, H., Raabe, D. Modification of pineapple leaf fibers and graft copolymerization of acrylonitrile onto modified fibers. J. Compos. Mater. 2012, 46, 79; https://doi.org/10.1177/0021998311410486.Search in Google Scholar

33. Weng, C. H., Wu, Y. C. Potential low-cost biosorbent for copper removal: pineapple leaf powder. J. Environ. Eng. 2011, 138, 286; https://doi.org/10.1061/(asce)ee.1943-7870.0000424.Search in Google Scholar

34. Kousha, M., Daneshvar, E., Sohrabi, M. S., Jokar, M., Bhatnagar, A. Adsorption of acid orange ii by raw and chemically modified brown macroalga Stoechospermum marginatum. Chem. Eng. J. 2012, 192, 67; https://doi.org/10.1016/j.cej.2012.03.057.Search in Google Scholar

35. Karthik, R., Meenakshi, S. Removal of hexavalent chromium ions using polyaniline/silica gel composite. J. Water Process Eng. 2014, 1, 37; https://doi.org/10.1016/j.jwpe.2014.03.001.Search in Google Scholar

36. Saini, D., Kaur, A., Kaur, A. Synthesis and analysis of silica/polyaniline nanocomposites. Int. J. Eng. Sci. 2016, 21, 1–7.Search in Google Scholar

37. Roosz, N., Euvard, M., Lakard, B., Buron, C. C., Martin, N., Viau, L. Synthesis and characterization of polyaniline-silica composites Raspberry vs core-shell structures. Where do we stand? J. Colloid Interface Sci. 2017, 502, 184; https://doi.org/10.1016/j.jcis.2017.04.092.Search in Google Scholar PubMed

38. Li, P., Ni, C., Shi, G., Zhang, D., Xu, Y. Fabricating composite supercapacitor electrodes of polyaniline and aniline-terminated silica by mechanical agitation and sonication. J. Solid State Electrochem. 2018, 22, 1249; https://doi.org/10.1007/s10008-017-3870-2.Search in Google Scholar

39. Gad, H. M. H., Hamed, M. M., Abo Eldahab, H. M. M., Moustafa, M. E., El-Reefy, S. A. Radiation-induced grafting copolymerization of resin onto the surface of silica extracted from rice husk ash for adsorption of gadolinium. J. Mol. Liq. 2017, 231, 45; https://doi.org/10.1016/j.molliq.2017.01.088.Search in Google Scholar

40. Kruk, M., Jaroniec, M. Characterization of the porous structure of SBA-15. Chem. Mater. 2000, 12, 1961; https://doi.org/10.1021/cm000164e.Search in Google Scholar

41. Mothé, C. G., Miranda, I. C. Characterization of sugarcane and coconut fibers by thermal analysis and FTIR. J. Therm. Anal. Calorim. 2009, 97, 661; https://doi.org/10.1007/s10973-009-0346-3.Search in Google Scholar

42. Ong, S. T., Lee, W. N., Keng, P. S., Lee, S. L., Hung, Y. T., Ha, S. T. Equilibrium studies and kinetics mechanism for the removal of basic and reactive dyes in both single and binary systems using EDTA modified rice husk. Int. J. Phys. Sci. 2010, 5, 582.Search in Google Scholar

43. Zheng, H., Liu, D., Zheng, Y., Liang, S., Liu, Z. Sorption isotherm and kinetic modeling of aniline on Cr-bentonite. J. Hazard Mater. 2009, 167, 141; https://doi.org/10.1016/j.jhazmat.2008.12.093.Search in Google Scholar PubMed

44. Mahmoud, M., Soliman, M., Allan, K. Removal of Thoron and Arsenazo III from radioactive liquid waste by sorption onto cetyltrimethylammonium-functionalized polyacrylonitrile. J. Radioanal. Nucl. Chem. 2014, 300, 1195; https://doi.org/10.1007/s10967-014-3088-z.Search in Google Scholar

45. Alosmanov, R. Adsorption of Arsenazo-III dye by phosphorus-containing polymer sorbent. J. Serb. Chem. Soc. 2016, 81, 907; https://doi.org/10.2298/jsc151008042a.Search in Google Scholar

46. Ghaedi, M., Shokrollahi, A., Tavallali, H., Shojaiepoor, F., Keshavarz, B., Hossainian, H., Soylak, M., Purkait, M. Activated carbon and multiwalled carbon nanotubes as efficient adsorbents for removal of Arsenazo-III and methyl red from waste water. Toxicol. Environ. Chem. 2011, 93, 438; https://doi.org/10.1080/02772248.2010.540244.Search in Google Scholar

47. Mansy, M. S., Hassan, R. S., Selim, Y. T., Kenawy, S. H. Evaluation of synthetic aluminum silicate modified by magnesia for the removal of 137Cs, 60Co and 152+154Eu from low-level radioactive waste. Appl. Radiat. Isot. 2017, 130, 198; https://doi.org/10.1016/j.apradiso.2017.09.042.Search in Google Scholar PubMed

48. El-Naggar, I. M., Sheneshen, E. S., Abdel-Galil, E. A. Retention behavior studies for the removal of some hazardous metal ions from waste solutions using polyaniline silicotitanate as composite cation exchanger. Desalin. Water Treat. 2015, 56, 1820; https://doi.org/10.1080/19443994.2014.952672.Search in Google Scholar

49. Hamed, M. M., Holiel, M., Ismail, Z. H. Removal of 134Cs and 152+154Eu from liquid radioactive waste using Dowex HCR-S/S. Radiochim. Acta 2016, 104, 399; https://doi.org/10.1515/ract-2015-2514.Search in Google Scholar

50. Dogan, M., Ozdemir, Y., Alkan, M. Adsorption kinetics and mechanism of cationic methyl violet and methylene blue dyes onto sepiolite. Dyes Pigments 2007, 75, 701; https://doi.org/10.1016/j.dyepig.2006.07.023.Search in Google Scholar

51. Lagergren, S. Zur Theorie der sogenannten adsorption gelöster stoffe, Kungliga Svenska Vetenskap sakademiens. Handlingar 1898, 24, 1.Search in Google Scholar

52. Gusmão, K. A. G., Gurgel, L. V. A., Meloa, T. M. S., Gil, L. F. Application of succinylated sugarcane bagasse as adsorbent to remove methylene blue and gentian violet from aqueous solutions – Kinetic and equilibrium studies. Dyes Pigments 2012, 92, 967; https://doi.org/10.1016/j.dyepig.2011.09.005.Search in Google Scholar

53. Ho, Y. S., McKay, G. The sorption of lead(II) ions on peat. Water Res. 1999, 33, 578; https://doi.org/10.1016/s0043-1354(98)00207-3.Search in Google Scholar

54. Ho, Y. S., McKay, G. The kinetics of sorption of divalent metal ions onto sphagnum moss peat. Water Res. 2000, 34, 735; https://doi.org/10.1016/s0043-1354(99)00232-8.Search in Google Scholar

55. Weber, W. J., Morris, J. C. Kinetics of adsorption on carbon from solution. J. Sanit. Eng. Div. 1963, 89, 31.10.1061/JSEDAI.0000430Search in Google Scholar

56. Abdel-Galil, E. A., Rizk, H. E., Mostafa, A. Z. Isotherm, kinetic, and thermodynamic studies for sorption of Cu(II) and Pb(II) by activated carbon prepared from Leucaena plant wastes. Part. Sci. Technol. 2016, 34, 540; https://doi.org/10.1080/02726351.2015.1089962.Search in Google Scholar

57. Reichenberg, D. Properties of ion-exchange resins in relation to their structure. III. Kinetics of exchange. J. Am. Chem. Soc. 1953, 75, 589; https://doi.org/10.1021/ja01099a022.Search in Google Scholar

58. Abdel-Galil, E. A., Abdel Aziz, O. A., Mostafa, A. Z., Amin, M. Characterization and sorption behavior of some toxic metal ions on Fusarium oxysporum as biomass adsorbent. Desalin. Water Treat. 2018, 133, 134; https://doi.org/10.5004/dwt.2018.23010.Search in Google Scholar

59. Hamed, M. M., Holiel, M., El-Aryan, Y. F. Removal of selenium and iodine radionuclides from waste solutions using synthetic inorganic ion exchanger. J. Mol. Liq. 2017, 242, 722; https://doi.org/10.1016/j.molliq.2017.07.035.Search in Google Scholar

60. El-Sayed, A. A., Hamed, M. M., El_Reefy, S. A. Determination of micro_amounts of zirconium in mixed aqueous organic medium by normal and first_derivative spectrophotometry. J. Anal. Chem. 2010, 65, 1113; https://doi.org/10.1134/s1061934810110043.Search in Google Scholar

Received: 2020-03-15
Accepted: 2020-05-19
Published Online: 2020-08-19
Published in Print: 2020-10-25

© 2020 Walter de Gruyter GmbH, Berlin/Boston

Downloaded on 28.3.2024 from https://www.degruyter.com/document/doi/10.1515/ract-2020-0022/html
Scroll to top button