Skip to main content
Log in

Mechanisms and Signaling Pathways of Salt Tolerance in Crops: Understanding from the Transgenic Plants

  • Published:
Tropical Plant Biology Aims and scope Submit manuscript

Abstract

Soil salinization is a serious agricultural issue that is severely affecting crop production across the world. Salt induced stresses are mainly included osmotic and ionic stresses, which could lead to other stresses e.g., oxidative stress in plants. The evolved plant mechanisms in salt tolerance are categorized into osmotic tolerance and ionic homeostasis mediated by ion exclusion and ions sequestration into vacuole. Osmotic tolerance involves long-distance signaling which still has many unknowns in crops, while ionic homeostasis is achieved by Na+/K+/H+ transporters and H+-pumps. Besides, the mechanisms of salt tolerance are regulated by various signaling pathways and transcription factors. A better understanding on the mechanisms of salt tolerance and its involved candidate genes is a prerequisite for increasing/maintaining yield potential of crops in saline soils. This review focuses on various mechanisms, signaling pathways and transcriptional regulations of salt tolerance in crops. We also review the various examples of underlying candidate genes that have been engineered to develop the salt tolerant crops, and may also have worth in next crop breeding.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abdula SE, Lee H-J, Ryu H, Kang KK, Nou I, Sorrells ME, Cho Y-G (2016) Overexpression of BrCIPK1 gene enhances abiotic stress tolerance by increasing proline biosynthesis in rice. Plant Mol Biol Report 34(2):501–511

    Article  CAS  Google Scholar 

  • Abebe T, Guenzi AC, Martin B, Cushman JC (2003) Tolerance of mannitol-accumulating transgenic wheat to water stress and salinity. Plant Physiol 131(4):1748–1755

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • AbuQamar S, Luo H, Laluk K, Mickelbart MV, Mengiste T (2009) Crosstalk between biotic and abiotic stress responses in tomato is mediated by the AIM1 transcription factor. Plant J 58(2):347–360

    Article  CAS  PubMed  Google Scholar 

  • Adams E, Shin R (2014) Transport, signaling, and homeostasis of potassium and sodium in plants. J Integr Plant Biol 56(3):231–249

    Article  CAS  PubMed  Google Scholar 

  • Afzal Z, Howton T, Sun Y, Mukhtar M (2016) The roles of aquaporins in plant stress responses. J Dev Biol 4(1):9

    Article  PubMed Central  CAS  Google Scholar 

  • Agarwal P, Agarwal PK, Joshi AJ, Sopory SK, Reddy MK (2010) Overexpression of PgDREB2A transcription factor enhances abiotic stress tolerance and activates downstream stress-responsive genes. Mol Biol Rep 37(2):1125

    Article  CAS  PubMed  Google Scholar 

  • Agarwal PK, Shukla PS, Gupta K, Jha B (2013) Bioengineering for salinity tolerance in plants: state of the art. Mol Biotechnol 54(1):102–123

    Article  CAS  PubMed  Google Scholar 

  • Ahmad P, Abdel Latef AA, Hashem A, Abd_Allah EF, Gucel S, Tran L-SP (2016) Nitric oxide mitigates salt stress by regulating levels of osmolytes and antioxidant enzymes in chickpea. Front Plant Sci 7:347

    PubMed  PubMed Central  Google Scholar 

  • Ahmadi N, Negrão S, Katsantonis D, Frouin J, Ploux J, Letourmy P, Droc G, Babo P, Trindade H, Bruschi G (2011) Targeted association analysis identified japonica rice varieties achieving Na+/K+ homeostasis without the allelic make-up of the salt tolerant indica variety Nona Bokra. Theor Appl Genet 123(6):881–895

    Article  CAS  PubMed  Google Scholar 

  • Ali Z, Park HC, Ali A, Oh DH, Aman R, Kropornicka A, Hong H, Choi W, Chung WS, Kim W-Y (2012) TsHKT1; 2, a HKT1 homolog from the extremophile Arabidopsis relative Thellungiella salsuginea, shows K+ specificity in the presence of NaCl. Plant Physiol 158(3):1463–1474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alia, Saradhi PP, Mohanty P (1993) Proline in relation to free radical production in seedlings of Brassica juncea raised under sodium chloride stress. Plant Soil 155/156:497–500

    Article  Google Scholar 

  • Almeida P, Katschnig D, de Boer A (2013) HKT transporters—state of the art. Int J Mol Sci 14(10):20359–20385

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Almeida DM, Oliveira MM, Saibo NJ (2017) Regulation of Na+ and K+ homeostasis in plants: towards improved salt stress tolerance in crop plants. Genet Mol Biol 40(1):326–345

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Amin U, Biswas S, Elias SM, Razzaque S, Haque T, Malo R, Seraj ZI (2016) Enhanced salt tolerance conferred by the complete 2.3 kb cDNA of the rice vacuolar Na+/H+ antiporter gene compared to 1.9 kb coding region with 5′ UTR in transgenic lines of rice. Front Plant Sci 7:14

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Anjaneyulu E, Reddy PS, Sunita MS, Kishor PBK, Meriga B (2014) Salt tolerance and activity of antioxidative enzymes of transgenic finger millet overexpressing a vacuolar H+-pyrophosphatase gene (SbVPPase) from Sorghum bicolor. J Plant Physiol 171(10):789–798

    Article  CAS  PubMed  Google Scholar 

  • Apse MP, Blumwald E (2002) Engineering salt tolerance in plants. Curr Opin Biotechnol 13(2):146–150

    Article  CAS  PubMed  Google Scholar 

  • Arango M, Gévaudant F, Oufattole M, Boutry M (2003) The plasma membrane proton pump ATPase: the significance of gene subfamilies. Planta 216(3):355–365

    Article  CAS  PubMed  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69(1):26–36

    Article  CAS  PubMed  Google Scholar 

  • Ashraf M, Foolad MR (2007) Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environ Exp Bot 59(2):206–216

    Article  CAS  Google Scholar 

  • Augustine SM, Narayan JA, Syamaladevi DP, Appunu C, Chakravarthi M, Ravichandran V, Tuteja N, Subramonian N (2015) Overexpression of EaDREB2 and pyramiding of EaDREB2 with the pea DNA helicase gene (PDH45) enhance drought and salinity tolerance in sugarcane (Saccharum spp. hybrid). Plant Cell Rep 34(2):247–263

    Article  CAS  PubMed  Google Scholar 

  • Bae EK, Lee H, Lee JS, Noh EW (2011) Drought, salt and wounding stress induce the expression of the plasma membrane intrinsic protein 1 gene in poplar (Populus alba× P. tremula var. glandulosa). Gene 483(1–2):43–48

    Article  CAS  PubMed  Google Scholar 

  • Baier M, Kandlbinder A, Golldack D, Dietz KJ (2005) Oxidative stress and ozone: perception, signalling and response. Plant Cell Environ 28(8):1012–1020

    Article  CAS  Google Scholar 

  • Baisakh N, RamanaRao MV, Rajasekaran K, Subudhi P, Janda J, Galbraith D, Vanier C, Pereira A (2012) Enhanced salt stress tolerance of rice plants expressing a vacuolar H+-ATPase subunit c1 (SaVHAc1) gene from the halophyte grass Spartina alterniflora Löisel. Plant Biotechnol J 10(4):453–464

    Article  CAS  PubMed  Google Scholar 

  • Bao A-K, Wang S-M, Wu G-Q, Xi J-J, Zhang J-L, Wang C-M (2009) Overexpression of the Arabidopsis H+-PPase enhanced resistance to salt and drought stress in transgenic alfalfa (Medicago sativa L.). Plant Sci 176(2):232–240

    Article  CAS  Google Scholar 

  • Bao AK, Du BQ, Touil L, Kang P, Wang QL, Wang SM (2016) Co-expression of tonoplast Cation/H+ antiporter and H+-pyrophosphatase from xerophyte Zygophyllum xanthoxylum improves alfalfa plant growth under salinity, drought and field conditions. Plant Biotechnol J 14(3):964–975

    Article  CAS  PubMed  Google Scholar 

  • Bao-Yan A, Yan L, Jia-Rui L, Wei-Hua Q, Zhang X-S, Xin-Qi G (2008) Expression of a vacuolar Na+/H+ antiporter gene of alfalfa enhances salinity tolerance in transgenic Arabidopsis. Acta Agron Sin 34(4):557–564

    Google Scholar 

  • Bassil E, Blumwald E (2014) The ins and outs of intracellular ion homeostasis: NHX-type cation/H+ transporters. Curr Opin Plant Biol 22:1–6

    Article  CAS  PubMed  Google Scholar 

  • Batelli G, Verslues PE, Agius F, Qiu Q, Fujii H, Pan S, Schumaker KS, Grillo S, Zhu J-K (2007) SOS2 promotes salt tolerance in part by interacting with the vacuolar H+-ATPase and upregulating its transport activity. Mol Cell Biol 27(22):7781–7790

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Batistič O, Kudla J (2012) Analysis of calcium signaling pathways in plants. Biochim Biophys Acta, Gen Subj 1820(8):1283–1293

    Article  CAS  Google Scholar 

  • Baxter I, Tchieu J, Sussman MR, Boutry M, Palmgren MG, Gribskov M, Harper JF, Axelsen KB (2003) Genomic comparison of P-type ATPase ion pumps in Arabidopsis and rice. Plant Physiol 132(2):618–628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhaskaran S, Savithramma D (2011) Co-expression of Pennisetum glaucum vacuolar Na+/H+ antiporter and Arabidopsis H+-pyrophosphatase enhances salt tolerance in transgenic tomato. J Exp Bot 62(15):5561–5570

    Article  CAS  PubMed  Google Scholar 

  • Blumwald E, Aharon GS, Apse MP (2000) Sodium transport in plant cells. Biochim Biophys Acta Biomembr 1465(1–2):140–151

    Article  CAS  Google Scholar 

  • Boudsocq M, Sheen J (2013) CDPKs in immune and stress signaling. Trends Plant Sci 18(1):30–40

    Article  CAS  PubMed  Google Scholar 

  • Brini F, Masmoudi K (2012) Ion transporters and abiotic stress tolerance in plants. ISRN Mol Biol 2012

  • Brini F, Hanin M, Mezghani I, Berkowitz GA, Masmoudi K (2007) Overexpression of wheat Na+/H+ antiporter TNHX1 and H+-pyrophosphatase TVP1 improve salt-and drought-stress tolerance in Arabidopsis thaliana plants. J Exp Bot 58(2):301–308

    Article  CAS  PubMed  Google Scholar 

  • Cai R, Zhao Y, Wang Y, Lin Y, Peng X, Li Q, Chang Y, Jiang H, Xiang Y, Cheng B (2014) Overexpression of a maize WRKY58 gene enhances drought and salt tolerance in transgenic rice. Plant Cell Tissue Organ Cult 119(3):565–577

    Article  CAS  Google Scholar 

  • Campo S, Baldrich P, Messeguer J, Lalanne E, Coca M, San Segundo B (2014) Overexpression of a calcium-dependent protein kinase confers salt and drought tolerance in rice by preventing membrane lipid peroxidation. Plant Physiol 165(2):688–704

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen M, Chen Q, Niu X, Zhang R, Lin H, Xu C, Wang X, Wang G, Chen J (2007) Expression of OsNHX1 gene in maize confers salt tolerance and promotes plant growth in the field. Plant Soil Environ 53(11):490

    Article  CAS  Google Scholar 

  • Chen XF, Gu ZM, Feng L, Zhang HS (2011) Molecular analysis of rice CIPKs involved in both biotic and abiotic stress responses. Rice Sci 18(1):1–9

    Article  Google Scholar 

  • Chen LJ, Wuriyanghan H, Zhang YQ, Duan KX, Chen HW, Li QT, Lu X, He SJ, Ma B, Zhang WK (2013a) An S-domain receptor-like kinase, OsSIK2, confers abiotic stress tolerance and delays dark-induced leaf senescence in rice. Plant Physiol 163(4):1752–1765

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Z, Pan Y, An L, Yang W, Xu L, Zhu C (2013b) Heterologous expression of a halophilic archaeon manganese superoxide dismutase enhances salt tolerance in transgenic rice. Russ J Plant Physiol 60(3):359–366

    Article  CAS  Google Scholar 

  • Chen X, Wang Y, Lv B, Li J, Luo L, Lu S, Zhang X, Ma H, Ming F (2014) The NAC family transcription factor OsNAP confers abiotic stress response through the ABA pathway. Plant Cell Physiol 55(3):604–619

    Article  CAS  PubMed  Google Scholar 

  • Chen X, Lu X, Shu N, Wang D, Wang S, Wang J, Guo L, Guo X, Fan W, Lin Z (2017) GhSOS1, a plasma membrane Na+/H+ antiporter gene from upland cotton, enhances salt tolerance in transgenic Arabidopsis thaliana. PLoS One 12(7)

  • Chen K, Song M, Guo Y, Liu L, Xue H, Dai H, Zhang Z (2019a) Md MYB 46 could enhance salt and osmotic stress tolerance in apple by directly activating stress-responsive signals. Plant Biotechnol J 17(12):2341–2355

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen Y, Li C, Zhang B, Yi J, Yang Y, Kong C, Lei C, Gong M (2019b) The role of the late embryogenesis-abundant (LEA) protein family in development and the abiotic stress response: a comprehensive expression analysis of potato (Solanum tuberosum). Genes 10(2):148

    Article  CAS  PubMed Central  Google Scholar 

  • Cheong MS, Yun DJ (2007) Salt-stress signaling. J Plant Biol 50(2):148–155

    Article  CAS  Google Scholar 

  • Christou A, Manganaris GA, Papadopoulos I, Fotopoulos V (2013) Hydrogen sulfide induces systemic tolerance to salinity and non-ionic osmotic stress in strawberry plants through modification of reactive species biosynthesis and transcriptional regulation of multiple defence pathways. J Exp Bot 64(7):1953–1966

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cortina C, Culiáñez-Macià FA (2005) Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Sci 169(1):75–82

    Article  CAS  Google Scholar 

  • Cotsaftis O, Plett D, Shirley N, Tester M, Hrmova M (2012) A two-staged model of Na+ exclusion in rice explained by 3D modeling of HKT transporters and alternative splicing. PLoS One 7(7):e39865

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cui MH, Yoo KS, Hyoung S, Nguyen HTK, Kim YY, Kim HJ, Ok SH, Yoo SD, Shin JS (2013) An Arabidopsis R2R3-MYB transcription factor, AtMYB20, negatively regulates type 2C serine/threonine protein phosphatases to enhance salt tolerance. FEBS Lett 587(12):1773–1778

    Article  CAS  PubMed  Google Scholar 

  • Dai X, Xu Y, Ma Q, Xu W, Wang T, Xue Y, Chong K (2007) Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143(4):1739–1751

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Das K, Roychoudhury A (2014) Reactive oxygen species (ROS) and response of antioxidants as ROS-scavengers during environmental stress in plants. Front Environ Sci 2:53

    Article  Google Scholar 

  • Deinlein U, Stephan AB, Horie T, Luo W, Xu G, Schroeder JI (2014) Plant salt-tolerance mechanisms. Trends Plant Sci 19(6):371–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Deng X, Hu W, Wei S, Zhou S, Zhang F, Han J, Chen L, Li Y, Feng J, Fang B (2013) TaCIPK29, a CBL-interacting protein kinase gene from wheat, confers salt stress tolerance in transgenic tobacco. PLoS One 8(7):e69881

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Diédhiou CJ, Popova OV, Dietz KJ, Golldack D (2008) The SNF1-type serine-threonine protein kinase SAPK4 regulates stress-responsive gene expression in rice. BMC Plant Biol 8(1):49

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Duan XG, Yang AF, Gao F, Zhang SL, Zhang JR (2007) Heterologous expression of vacuolar H+-PPase enhances the electrochemical gradient across the vacuolar membrane and improves tobacco cell salt tolerance. Protoplasma 232(1–2):87–95

    Article  CAS  PubMed  Google Scholar 

  • Duan L, Dietrich D, Ng CH, Chan PMY, Bhalerao R, Bennett MJ, Dinneny JR (2013) Endodermal ABA signaling promotes lateral root quiescence during salt stress in Arabidopsis seedlings. Plant Cell 25(1):324–341

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fan W, Zhang M, Zhang H, Zhang P (2012) Improved tolerance to various abiotic stresses in transgenic sweet potato (Ipomoea batatas) expressing spinach betaine aldehyde dehydrogenase. PLoS One 7(5):e37344

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Flowers TJ, Troke PF, Yeo AR (1977) The mechanism of salt tolerance in halophytes. Annu Rev Plant Physiol 28(1):89–121

    Article  CAS  Google Scholar 

  • Flowers T, Koyama M, Flowers S, Sudhakar C, Singh K, Yeo A (2000) QTL: their place in engineering tolerance of rice to salinity. J Exp Bot 51(342):99–106

    Article  CAS  PubMed  Google Scholar 

  • Gao M, Tao R, Miura K, Dandekar AM, Sugiura A (2001) Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Sci 160(5):837–845

    Article  CAS  PubMed  Google Scholar 

  • Gao F, Gao Q, Duan X, Yue G, Yang A, Zhang J (2006) Cloning of an H+-PPase gene from Thellungiella halophila and its heterologous expression to improve tobacco salt tolerance. J Exp Bot 57(12):3259–3270

    Article  CAS  PubMed  Google Scholar 

  • Gao SQ, Chen M, Xia LQ, Xiu HJ, Xu ZS, Li LC, Zhao CP, Cheng XG, Ma YZ (2009) A cotton (Gossypium hirsutum) DRE-binding transcription factor gene, GhDREB, confers enhanced tolerance to drought, high salt, and freezing stresses in transgenic wheat. Plant Cell Rep 28(2):301–311

    Article  CAS  PubMed  Google Scholar 

  • Garg AK, Kim JK, Owens TG, Ranwala AP, Do Choi Y, Kochian LV, Wu RJ (2002) Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A 99(25):15898–15903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaxiola RA, Palmgren MG, Schumacher K (2007) Plant proton pumps. FEBS Lett 581(12):2204–2214

    Article  CAS  PubMed  Google Scholar 

  • Geilfus CM, Mithöfer A, Ludwig Müller J, Zörb C, Muehling KH (2015) Chloride-inducible transient apoplastic alkalinizations induce stomata closure by controlling abscisic acid distribution between leaf apoplast and guard cells in salt-stressed Vicia faba. New Phytol 208(3):803–816

    Article  CAS  PubMed  Google Scholar 

  • Gil Ortiz R, Lull Noguera C, Boscaiu Neagu MT, Bautista Carrascosa I, Cerezuela L, Luis A, Vicente Meana Ó (2011) Soluble carbohydrates as osmolytes in several halophytes from a Mediterranean salt marsh. Notulae Botanicae Horti Agrobotanici Cluj-Napoca 39(2):9–17

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Biochem 48(12):909–930

    Article  CAS  PubMed  Google Scholar 

  • Gilroy S, Suzuki N, Miller G, Choi W-G, Toyota M, Devireddy AR, Mittler R (2014) A tidal wave of signals: calcium and ROS at the forefront of rapid systemic signaling. Trends Plant Sci 19(10):623–630

    Article  CAS  PubMed  Google Scholar 

  • Gleeson T, Wada Y, Bierkens MFP, van Beek LPH (2012) Water balance of global aquifers revealed by groundwater footprint. Nature 488(7410):197

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Lüking I, Yang O (2011) Plant tolerance to drought and salinity: stress regulating transcription factors and their functional significance in the cellular transcriptional network. Plant Cell Rep 30(8):1383–1391

    Article  CAS  PubMed  Google Scholar 

  • Golldack D, Li C, Mohan H, Probst N (2014) Tolerance to drought and salt stress in plants: unraveling the signaling networks. Front Plant Sci 5:151

    Article  PubMed  PubMed Central  Google Scholar 

  • Gouiaa S, Khoudi H (2015) Co-expression of vacuolar Na+/H+ antiporter and H+-pyrophosphatase with an IRES-mediated dicistronic vector improves salinity tolerance and enhances potassium biofortification of tomato. Phytochemistry 117:537–546

    Article  CAS  PubMed  Google Scholar 

  • Gouiaa S, Khoudi H, Leidi EO, Pardo JM, Masmoudi K (2012) Expression of wheat Na+/H+ antiporter TNHXS1 and H+-pyrophosphatase TVP1 genes in tobacco from a bicistronic transcriptional unit improves salt tolerance. Plant Mol Biol 79(1–2):137–155

    Article  CAS  PubMed  Google Scholar 

  • Guan R, Qu Y, Guo Y, Yu L, Liu Y, Jiang J, Chen J, Ren Y, Liu G, Tian L (2014) Salinity tolerance in soybean is modulated by natural variation in G m SALT 3. Plant J 80(6):937–950

    Article  CAS  PubMed  Google Scholar 

  • Guinn EJ, Pegram LM, Capp MW, Pollock MN, Record MT (2011) Quantifying why urea is a protein denaturant, whereas glycine betaine is a protein stabilizer. Proc Natl Acad Sci U S A 108(41):16932–16937

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gupta B, Huang B (2014) Mechanism of salinity tolerance in plants: physiological, biochemical, and molecular characterization. Int J Genom 2014(1):701596

  • Han X, Yang Y, Wu Y, Liu X, Lei X, Guo Y (2017) A bioassay-guided fractionation system to identify endogenous small molecules that activate plasma membrane H+-ATPase activity in Arabidopsis. J Exp Bot 68(11):2951–2962

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hanin M, Ebel C, Ngom M, Laplaze L, Masmoudi K (2016) New insights on plant salt tolerance mechanisms and their potential use for breeding. Front Plant Sci 7:1787

    Article  PubMed  PubMed Central  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Biol 51(1):463–499

    Article  CAS  Google Scholar 

  • Hmida Sayari A, Gargouri Bouzid R, Bidani A, Jaoua L, Savouré A, Jaoua S (2005) Overexpression of Δ1-pyrroline-5-carboxylate synthetase increases proline production and confers salt tolerance in transgenic potato plants. Plant Sci 169(4):746–752

    Article  CAS  Google Scholar 

  • Hong Y, Zhang H, Huang L, Li D, Song F (2016) Overexpression of a stress-responsive NAC transcription factor gene ONAC022 improves drought and salt tolerance in rice. Front Plant Sci 7:4

    Article  PubMed  PubMed Central  Google Scholar 

  • Horie T, Motoda J, Kubo M, Yang H, Yoda K, Horie R, Chan WY, Leung HY, Hattori K, Konomi M (2005) Enhanced salt tolerance mediated by AtHKT1 transporter-induced Na+ unloading from xylem vessels to xylem parenchyma cells. Plant J 44(6):928–938

    Article  PubMed  CAS  Google Scholar 

  • Horie T, Horie R, Chan WY, Leung HY, Schroeder JI (2006) Calcium regulation of sodium hypersensitivities of sos3 and athkt1 mutants. Plant Cell Physiol 47(5):622–633

    Article  CAS  PubMed  Google Scholar 

  • Horie T, Hauser F, Schroeder JI (2009) HKT transporter-mediated salinity resistance mechanisms in Arabidopsis and monocot crop plants. Trends Plant Sci 14(12):660–668

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L (2008) Characterization of transcription factor gene SNAC2 conferring cold and salt tolerance in rice. Plant Mol Biol 67(1–2):169–181

    Article  CAS  PubMed  Google Scholar 

  • Hu L, Zhang P, Jiang Y, Fu J (2015) Metabolomic analysis revealed differential adaptation to salinity and alkalinity stress in Kentucky bluegrass (Poa pratensis). Plant Mol Biol Report 33(1):56–68

    Article  CAS  Google Scholar 

  • Huertas R, Olias R, Eljakaoui Z, Galvez FJ, Li J, De Morales PA, Belver A, Rodriguez Rosales MP (2012) Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato. Plant Cell Environ 35(8):1467–1482

    Article  CAS  PubMed  Google Scholar 

  • Islam MO, Kato H, Shima S, Tezuka D, Matsui H, Imai R (2019) Functional identification of a rice trehalase gene involved in salt stress tolerance. Gene 685:42–49

    Article  CAS  PubMed  Google Scholar 

  • Ismail A, Takeda S, Nick P (2014) Life and death under salt stress: same players, different timing? J Exp Bot 65(12):2963–2979

    Article  CAS  PubMed  Google Scholar 

  • Jacobs A, Ford K, Kretschmer J, Tester M (2011) Rice plants expressing the moss sodium pumping ATPase PpENA1 maintain greater biomass production under salt stress. Plant Biotechnol J 9(8):838–847

    Article  CAS  PubMed  Google Scholar 

  • James RA, Davenport RJ, Munns R (2006) Physiological characterization of two genes for Na+ exclusion in durum wheat, Nax1 and Nax2. Plant Physiol 142(4):1537–1547

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • James RA, Blake C, Byrt CS, Munns R (2011) Major genes for Na+ exclusion, Nax1 and Nax2 (wheat HKT1; 4 and HKT1; 5), decrease Na+ accumulation in bread wheat leaves under saline and waterlogged conditions. J Exp Bot 62(8):2939–2947

    Article  CAS  PubMed  Google Scholar 

  • Jammes F, Song C, Shin D, Munemasa S, Takeda K, Gu D, Cho D, Lee S, Giordo R, Sritubtim S (2009) MAP kinases MPK9 and MPK12 are preferentially expressed in guard cells and positively regulate ROS-mediated ABA signaling. Proc Natl Acad Sci U S A 106(48):20520–20525

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jan A, Maruyama K, Todaka D, Kidokoro S, Abo M, Yoshimura E, Shinozaki K, Nakashima K, Yamaguchi Shinozaki K (2013) OsTZF1, a CCCH-tandem zinc finger protein, confers delayed senescence and stress tolerance in rice by regulating stress-related genes. Plant Physiol 161(3):1202–1216

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jang IC, Oh SJ, Seo JS, Choi WB, Song SI, Kim CH, Kim YS, Seo HS, Do Choi Y, Nahm BH (2003) Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiol 131(2):516–524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Janicka-Russak M, Kabała K (2015) The role of plasma membrane H+-ATPase in salinity stress of plants. In: Progress in Botany. Springer, pp 77–92

  • Jeong MJ, Lee SK, Kim BG, Kwon TR, Cho WS, Park YT, Lee JO, Kwon HB, Byun MO, Park SC (2006) A rice (Oryza sativa L.) MAP kinase gene, OsMAPK44, is involved in response to abiotic stresses. Plant Cell Tissue Organ Cult 85(2):151–160

    Article  CAS  Google Scholar 

  • Jha A, Joshi M, Yadav NS, Agarwal PK, Jha B (2011) Cloning and characterization of the Salicorniabrachiata Na+/H+ antiporter gene SbNHX1 and its expression by abiotic stress. Mol Biol Rep 38(3):1965–1973

    Article  CAS  PubMed  Google Scholar 

  • Ji H, Pardo JM, Batelli G, Van Oosten MJ, Bressan RA, Li X (2013) The Salt Overly Sensitive (SOS) pathway: established and emerging roles. Mol Plant 6(2):275–286

    Article  CAS  PubMed  Google Scholar 

  • Jia G-X, Zhu Z-Q, Chang F-Q, Li Y-X (2002) Transformation of tomato with the BADH gene from Atriplex improves salt tolerance. Plant Cell Rep 21(2):141–146

    Article  CAS  Google Scholar 

  • Jia H, Wang C, Wang F, Liu S, Li G, Guo X (2015) GhWRKY68 reduces resistance to salt and drought in transgenic Nicotiana benthamiana. PLoS One 10(3):e0120646

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Jia B, Sun M, DuanMu H, Ding X, Liu B, Zhu Y, Sun X (2017) GsCHX19. 3, a member of cation/H+ exchanger superfamily from wild soybean contributes to high salinity and carbonate alkaline tolerance. Sci Rep 7(1):1–12

    Article  CAS  Google Scholar 

  • Jia Q, Zheng C, Sun S, Amjad H, Liang K, Lin W (2018) The role of plant cation/proton antiporter gene family in salt tolerance. Biol Plant 62(4):617–629

    Article  CAS  Google Scholar 

  • Jia Q, Kong D, Li Q, Sun S, Song J, Zhu Y, Liang K, Ke Q, Lin W, Huang J (2019) The function of inositol phosphatases in plant tolerance to abiotic stress. Int J Mol Sci 20(16):3999

    Article  CAS  PubMed Central  Google Scholar 

  • Jia Q, Sun S, Kong D, Song J, Wu L, Yan Z, Zuo L, Yang Y, Liang K, Lin W (2020) Ectopic Expression of Gs5PTase8, a Soybean Inositol Polyphosphate 5-Phosphatase, Enhances Salt Tolerance in Plants. Int J Mol Sci 21(3):1023

    Article  CAS  PubMed Central  Google Scholar 

  • Jiang Y, Deyholos MK (2009) Functional characterization of Arabidopsis NaCl-inducible WRKY25 and WRKY33 transcription factors in abiotic stresses. Plant Mol Biol 69(1–2):91–105

    Article  CAS  PubMed  Google Scholar 

  • Jiang Y, Yang B, Deyholos MK (2009) Functional characterization of the Arabidopsis bHLH92 transcription factor in abiotic stress. Mol Genet Genomics 282(5):503–516

    Article  CAS  PubMed  Google Scholar 

  • Jiang Z, Song G, Shan X, Wei Z, Liu Y, Jiang C, Jiang Y, Jin F, Li Y (2018) Association analysis and identification of ZmHKT1; 5 variation with salt-stress tolerance. Front Plant Sci 9:1485

    Article  PubMed  PubMed Central  Google Scholar 

  • Jin T, Sun Y, Zhao R, Shan Z, Gai J, Li Y (2019) Overexpression of Peroxidase Gene GsPRX9 Confers Salt Tolerance in Soybean. Int J Mol Sci 20(15):3745

    Article  CAS  PubMed Central  Google Scholar 

  • Jinjun Z, Peina J, Fang Z, Chongke Z, Bo B, Yaping L, Haifeng W, Fan C, Xianzhi X (2020) OsSRK1, an Atypical S-Receptor-Like Kinase Positively Regulates Leaf Width and Salt Tolerance in Rice. Rice Sci 27(2):133–142

    Article  Google Scholar 

  • Joshi R, Wani SH, Singh B, Bohra A, Dar ZA, Lone AA, Pareek A, Singla Pareek SL (2016) Transcription factors and plants response to drought stress: current understanding and future directions. Front Plant Sci 7:1029

    Article  PubMed  PubMed Central  Google Scholar 

  • Jung H-J, Kayum MA, Thamilarasan SK, Nath UK, Park J-I, Chung M-Y, Hur Y, Nou I-S (2017) Molecular characterisation and expression profiling of calcineurin B-like (CBL) genes in Chinese cabbage under abiotic stresses. Funct Plant Biol 44(7):739–750

    Article  CAS  PubMed  Google Scholar 

  • Kapilan R, Vaziri M, Zwiazek JJ (2018) Regulation of aquaporins in plants under stress. Biol Res 51(1):4

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Karthikeyan A, Pandian SK, Ramesh M (2011) Transgenic indica rice cv. ADT 43 expressing a Δ 1-pyrroline-5-carboxylate synthetase (P5CS) gene from Vigna aconitifolia demonstrates salt tolerance. Plant Cell Tissue Organ Cult 107(3):383–395

    Article  CAS  Google Scholar 

  • Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K (1999) Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 17(3):287

    Article  CAS  PubMed  Google Scholar 

  • Ketehouli T, Carther I, Foka K, Noman M, Wang F-W, Li X-W, Li H-Y (2019) Adaptation of Plants to Salt Stress: Characterization of Na+ and K+ Transporters and Role of CBL Gene Family in Regulating Salt Stress Response. Agronomy 9(11):687

    Article  CAS  Google Scholar 

  • Khedr AHA, Abbas MA, Wahid AAA, Quick WP, Abogadallah GM (2003) Proline induces the expression of salt-stress-responsive proteins and may improve the adaptation of Pancratium maritimum L. to salt-stress. J Exp Bot 54(392):2553–2562

    Article  CAS  PubMed  Google Scholar 

  • Kim BG, Waadt R, Cheong YH, Pandey GK, Dominguez-Solis JR, Schültke S, Lee SC, Kudla J, Luan S (2007) The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. Plant J 52(3):473–484

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signalling in Arabidopsis thaliana responding to drought and salinity. Plant J 12(5):1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Kong X, Pan J, Zhang M, Xing X, Zhou Y, Liu Y, Li D, Li D (2011) ZmMKK4, a novel group C mitogen-activated protein kinase kinase in maize (Zea mays), confers salt and cold tolerance in transgenic Arabidopsis. Plant Cell Environ 34(8):1291–1303

    Article  CAS  PubMed  Google Scholar 

  • Krzywińska E, Kulik A, Bucholc M, Fernandez MA, Rodriguez PL, Dobrowolska G (2016) Protein phosphatase type 2C PP2CA together with ABI1 inhibits SnRK2. 4 activity and regulates plant responses to salinity. Plant Signal Behav 11(12):e1253647

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kudla J, Batistič O, Hashimoto K (2010) Calcium signals: the lead currency of plant information processing. Plant Cell 22(3):541–563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Sinha AK (2013) Overexpression of constitutively active mitogen activated protein kinase kinase 6 enhances tolerance to salt stress in rice. Rice 6(1):25

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar K, Kumar M, Kim SR, Ryu H, Cho YG (2013) Insights into genomics of salt stress response in rice. Rice 6(1):27

    Article  PubMed  PubMed Central  Google Scholar 

  • Kumar IS, Rao SR, Vardhini B (2015) Role of phytohormones during salt stress tolerance in plants. Curr Trends Biotechnol Pharm 9(4):334–343

    Google Scholar 

  • Kumar M, Kesawat MS, Ali A, Lee S-C, Gill SS, Kim HU (2019) Integration of abscisic acid signaling with other signaling pathways in plant stress responses and development. Plants 8(12):592

    Article  CAS  PubMed Central  Google Scholar 

  • Leidi EO, Barragán V, Rubio L, El-Hamdaoui A, Ruiz MT, Cubero B, Fernández JA, Bressan RA, Hasegawa PM, Quintero FJ (2010) The AtNHX1 exchanger mediates potassium compartmentation in vacuoles of transgenic tomato. Plant J 61(3):495–506

    Article  CAS  PubMed  Google Scholar 

  • Li Q-L, Gao X-R, Yu X-H, Wang X-Z, An L-J (2003) Molecular cloning and characterization of betaine aldehyde dehydrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol Lett 25(17):1431–1436

    Article  CAS  PubMed  Google Scholar 

  • Li Y, Zhang Y, Feng F, Liang D, Cheng L, Ma F, Shi S (2010) Overexpression of a Malus vacuolar Na+/H+ antiporter gene (MdNHX1) in apple rootstock M. 26 and its influence on salt tolerance. Plant Cell Tissue Organ Cult 102(3):337–345

    Article  CAS  Google Scholar 

  • Li Y, Zhang H, Zhang Q, Liu Q, Zhai H, Zhao N, He S (2019) An AP2/ERF gene, IbRAP2–12, from sweetpotato is involved in salt and drought tolerance in transgenic Arabidopsis. Plant Sci 281:19–30

    Article  CAS  PubMed  Google Scholar 

  • Liang C, Zheng G, Li W, Wang Y, Hu B, Wang H, Wu H, Qian Y, Zhu XG, Tan DX (2015) Melatonin delays leaf senescence and enhances salt stress tolerance in rice. J Pineal Res 59(1):91–101

    Article  CAS  PubMed  Google Scholar 

  • Lin H, Yang Y, Quan R, Mendoza I, Wu Y, Du W, Zhao S, Schumaker KS, Pardo JM, Guo Y (2009) Phosphorylation of SOS3-Like calcium binding protein8 by SOS2 protein kinase stabilizes their protein complex and regulates salt tolerance in Arabidopsis. Plant Cell 21(5):1607–1619

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu H, Wang Q, Yu M, Zhang Y, Wu Y, Zhang H (2008) Transgenic salt-tolerant sugar beet (Beta vulgaris L.) constitutively expressing an Arabidopsis thaliana vacuolar Na+/H+ antiporter gene, AtNHX3, accumulates more soluble sugar but less salt in storage roots. Plant Cell Environ 31(9):1325–1334

    Article  CAS  PubMed  Google Scholar 

  • Liu QL, Xu KD, Zhao LJ, Pan YZ, Jiang BB, Zhang HQ, Liu GL (2011) Overexpression of a novel chrysanthemum NAC transcription factor gene enhances salt tolerance in tobacco. Biotechnol Lett 33(10):2073

    Article  CAS  PubMed  Google Scholar 

  • Liu C, Fukumoto T, Matsumoto T, Gena P, Frascaria D, Kaneko T, Katsuhara M, Zhong S, Sun X, Zhu Y (2013a) Aquaporin OsPIP1; 1 promotes rice salt resistance and seed germination. Plant Physiol Biochem 63:151–158

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Fan X-D, Wang F-W, Wang N, Dong Y-Y, Liu X-M, Yang J, Wang Y-F, Li H-Y (2013b) Coexpression of ScNHX1 and ScVP in transgenic hybrids improves salt and saline-alkali tolerance in alfalfa (Medicago sativa L.). J Plant Growth Regul 32(1):1–8

    Article  CAS  Google Scholar 

  • Liu J, Zhang S, Dong L, Chu J (2014) Incorporation of Na+/H+ antiporter gene from Aeluropus littoralis confers salt tolerance in soybean (Glycine max L.). Indian J Biochem Biophys

  • Liu Y, Sun J, Wu Y (2016a) Arabidopsis ATAF1 enhances the tolerance to salt stress and ABA in transgenic rice. J Plant Res 129(5):955–962

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Yu L, Qu Y, Chen J, Liu X, Hong H, Liu Z, Chang R, Gilliham M, Qiu L (2016b) GmSALT3, which confers improved soybean salt tolerance in the field, increases leaf Cl-exclusion prior to Na+ exclusion but does not improve early vigor under salinity. Front Plant Sci 7:1485

    PubMed  PubMed Central  Google Scholar 

  • Long W, Zou X, Zhang X (2015) Transcriptome analysis of canola (Brassica napus) under salt stress at the germination stage. PLoS One 10(2):e0116217

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lu SY, Jing YX, Shen SH, Zhao HY, Ma LQ, Zhou XJ, Ren Q, Li YF (2005) Antiporter gene from Hordum brevisubulatum (Trin.) link and its overexpression in transgenic tobaccos. J Integr Plant Biol 47(3):343–349

    Article  CAS  Google Scholar 

  • Luan S (2009) The CBL–CIPK network in plant calcium signaling. Trends Plant Sci 14(1):37–42

    Article  CAS  PubMed  Google Scholar 

  • Luan S, Kudla J, Rodriguez Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcineurin B–like proteins: Calcium sensors for specific signal response coupling in plants. Plant Cell 14(suppl 1):S389–S400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lutts S (2000) Exogenous glycinebetaine reduces sodium accumulation in salt-stressed rice plants. Int Rice Res Notes 25(2):39–40

    Google Scholar 

  • Lv S, Zhang K, Gao Q, Lian L, Song Y, Zhang J (2008) Overexpression of an H+-PPase gene from Thellungiella halophila in cotton enhances salt tolerance and improves growth and photosynthetic performance. Plant Cell Physiol 49(8):1150–1164

    Article  CAS  PubMed  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444(2):139–158

    Article  CAS  PubMed  Google Scholar 

  • Majee M, Maitra S, Dastidar KG, Pattnaik S, Chatterjee A, Hait NC, Das KP, Majumder AL (2004) A novel salt-tolerant L-myo-inositol-1-phosphate synthase from Porteresia coarctata (Roxb.) Tateoka, a halophytic wild rice molecular cloning, bacterial overexpression, characterization, and functional introgression into tobacco-conferring salt tolerance phenotype. J Biol Chem 279(27):28539–28552

    Article  CAS  PubMed  Google Scholar 

  • Mallikarjuna G, Mallikarjuna K, Reddy MK, Kaul T (2011) Expression of OsDREB2A transcription factor confers enhanced dehydration and salt stress tolerance in rice (Oryza sativa L.). Biotechnol Lett 33(8):1689–1697

    Article  CAS  PubMed  Google Scholar 

  • Mansour MMF (2014) The plasma membrane transport systems and adaptation to salinity. J Plant Physiol 171(18):1787–1800

    Article  CAS  PubMed  Google Scholar 

  • Martí MC, Stancombe MA, Webb AAR (2013) Cell-and stimulus type-specific intracellular free Ca2+ signals in Arabidopsis. Plant Physiol 163(2):625–634

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mäser P, Eckelman B, Vaidyanathan R, Horie T, Fairbairn DJ, Kubo M, Yamagami M, Yamaguchi K, Nishimura M, Uozumi N (2002) Altered shoot/root Na+ distribution and bifurcating salt sensitivity in Arabidopsis by genetic disruption of the Na+ transporter AtHKT1. FEBS Lett 531(2):157–161

    Article  PubMed  Google Scholar 

  • McLoughlin F, Galvan ACS, Julkowska MM, Caarls L, van der Does D, Laurière C, Munnik T, Haring MA, Testerink C (2012) The Snf1-related protein kinases SnRK2. 4 and SnRK2. 10 are involved in maintenance of root system architecture during salt stress. Plant J 72(3):436–449

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mehrotra R, Bhalothia P, Bansal P, Basantani MK, Bharti V, Mehrotra S (2014) Abscisic acid and abiotic stress tolerance–Different tiers of regulation. J Plant Physiol 171(7):486–496

    Article  CAS  PubMed  Google Scholar 

  • Mekonnen MM, Hoekstra AY (2016) Four billion people facing severe water scarcity. Sci Adv 2(2):e1500323

    Article  PubMed  PubMed Central  Google Scholar 

  • Meng L, Li S, Guo J, Guo Q, Mao P, Tian X (2017) Molecular cloning and functional characterisation of an H+-pyrophosphatase from Iris lactea. Sci Rep 7(1):1–10

    Article  CAS  Google Scholar 

  • Mian A, Oomen RJ, Isayenkov S, Sentenac H, Maathuis FJ, Véry AA (2011) Over-expression of an Na+−and K+-permeable HKT transporter in barley improves salt tolerance. Plant J 68(3):468–479

    Article  CAS  PubMed  Google Scholar 

  • Miller GAD, Suzuki N, Ciftci Yilmaz S, Mittler R (2010) Reactive oxygen species homeostasis and signalling during drought and salinity stresses. Plant Cell Environ 33(4):453–467

    Article  CAS  PubMed  Google Scholar 

  • Miranda RS, Alvarez-Pizarro JC, Costa JH, Paula SO, Prisco JT, Gomes-Filho E (2017) Putative role of glutamine in the activation of CBL/CIPK signalling pathways during salt stress in sorghum. Plant Signal Behav 12(8):522–536

    Article  CAS  Google Scholar 

  • Mittal D, Sharma N, Sharma V, Sopory SK, Sanan Mishra N (2016) Role of microRNAs in rice plant under salt stress. Ann Appl Biol 168(1):2–18

    Article  CAS  Google Scholar 

  • Mittler R, Blumwald E (2015) The Roles of ROS and ABA in Systemic Acquired AcclimationOPEN. Plant Cell 27:64–70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mittler R, Vanderauwera S, Suzuki N, Miller GAD, Tognetti VB, Vandepoele K, Gollery M, Shulaev V, Van Breusegem F (2011) ROS signaling: the new wave? Trends Plant Sci 16(6):300–309

    Article  CAS  PubMed  Google Scholar 

  • Mohanty A, Kathuria H, Ferjani A, Sakamoto A, Mohanty P, Murata N, Tyagi A (2002) Transgenics of an elite indica rice variety Pusa Basmati 1 harbouring the codA gene are highly tolerant to salt stress. Theor Appl Genet 106(1):51–57

    Article  CAS  PubMed  Google Scholar 

  • Møller IS, Tester M (2007) Salinity tolerance of Arabidopsis: a good model for cereals? Trends Plant Sci 12(12):534–540

    Article  PubMed  CAS  Google Scholar 

  • Møller IS, Gilliham M, Jha D, Mayo GM, Roy SJ, Coates JC, Haseloff J, Tester M (2009) Shoot Na+ exclusion and increased salinity tolerance engineered by cell type–specific alteration of Na+ transport in Arabidopsis. Plant Cell 21(7):2163–2178

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Morton MJL, Awlia M, Al-Tamimi N, Saade S, Pailles Y, Negrão S, Tester M (2019) Salt stress under the scalpel–dissecting the genetics of salt tolerance. Plant J 97(1):148–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muchate NS, Nikalje GC, Rajurkar NS, Suprasanna P, Nikam TD (2016) Plant salt stress: adaptive responses, tolerance mechanism and bioengineering for salt tolerance. Bot Rev 82(4):371–406

    Article  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25(2):239–250

    Article  CAS  PubMed  Google Scholar 

  • Munns R, Tester M (2008) Mechanisms of salinity tolerance. Annu Rev Plant Biol 59:651–681

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Läuchli A (2006) Approaches to increasing the salt tolerance of wheat and other cereals. J Exp Bot 57(5):1025–1043

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Xu B, Athman A, Conn SJ, Jordans C, Byrt CS, Hare RA, Tyerman SD, Tester M (2012) Wheat grain yield on saline soils is improved by an ancestral Na+ transporter gene. Nat Biotechnol 30(4):360

    Article  CAS  PubMed  Google Scholar 

  • Munns R, James RA, Gilliham M, Flowers TJ, Colmer TD (2016) Tissue tolerance: an essential but elusive trait for salt-tolerant crops. Funct Plant Biol 43(12):1103–1113

    Article  CAS  PubMed  Google Scholar 

  • Na Z, LI XJ, Lei W, Ying W, Wen HT, Ling L, Zhang X, Fan YL, Jun Z (2018) Maize ABP2 enhances tolerance to drought and salt stress in transgenic Arabidopsis. J Integr Agric 17(11):2379–2393

    Article  Google Scholar 

  • Nedjimi B (2011) Is salinity tolerance related to osmolytes accumulation in Lygeum spartum L. seedlings? J Saudi Soc Agric Sci 10(2):81–87

    CAS  Google Scholar 

  • Nguyen NT, Vu HT, Nguyen TT, Nguyen L-AT, Nguyen M-CD, Hoang KL, Nguyen KT, Quach TN (2019a) Co-expression of Arabidopsis AtAVP1 and AtNHX1 to Improve Salt Tolerance in Soybean. Crop Sci 59(3):1133–1143

    Article  CAS  Google Scholar 

  • Nguyen QH, Vu LTK, Nguyen LTN, Pham NTT, Nguyen YTH, Van Le S, Chu MH (2019b) Overexpression of the GmDREB6 gene enhances proline accumulation and salt tolerance in genetically modified soybean plants. Sci Rep 9(1):1–8

    Article  CAS  Google Scholar 

  • Niu CF, Wei W, Zhou QY, Tian AG, Hao YJ, Zhang WK, Ma B, Lin Q, Zhang ZB, Zhang JS (2012) Wheat WRKY genes TaWRKY2 and TaWRKY19 regulate abiotic stress tolerance in transgenic Arabidopsis plants. Plant Cell Environ 35(6):1156–1170

    Article  CAS  PubMed  Google Scholar 

  • Ohta M, Hayashi Y, Nakashima A, Hamada A, Tanaka A, Nakamura T, Hayakawa T (2002) Introduction of a Na+/H+ antiporter gene from Atriplex gmelini confers salt tolerance to rice. FEBS Lett 532(3):279–282

    Article  CAS  PubMed  Google Scholar 

  • Ohta M, Guo Y, Halfter U, Zhu J-K (2003) A novel domain in the protein kinase SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl Acad Sci U S A 100(20):11771–11776

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Olías R, Eljakaoui Z, Li J, De Morales PA, Marin Manzano MC, Pardo JM, Belver A (2009) The plasma membrane Na+/H+ antiporter SOS1 is essential for salt tolerance in tomato and affects the partitioning of Na+ between plant organs. Plant Cell Environ 32(7):904–916

    Article  PubMed  Google Scholar 

  • Orellana S, Yanez M, Espinoza A, Verdugo I, Gonzalez E, Ruiz Lara S, Casaretto JA (2010) The transcription factor SlAREB1 confers drought, salt stress tolerance and regulates biotic and abiotic stress-related genes in tomato. Plant Cell Environ 33(12):2191–2208

    Article  CAS  PubMed  Google Scholar 

  • Ouhibi C, Attia H, Rebah F, Msilini N, Chebbi M, Aarrouf J, Urban L, Lachaal M (2014) Salt stress mitigation by seed priming with UV-C in lettuce plants: growth, antioxidant activity and phenolic compounds. Plant Physiol Biochem 83:126–133

    Article  CAS  PubMed  Google Scholar 

  • Ouyang SQ, Liu YF, Liu P, Lei G, He SJ, Ma B, Zhang WK, Zhang JS, Chen SY (2010) Receptor-like kinase OsSIK1 improves drought and salt stress tolerance in rice (Oryza sativa) plants. Plant J 62(2):316–329

    Article  CAS  PubMed  Google Scholar 

  • Park HJ, Kim WY, Yun DJ (2016) A new insight of salt stress signaling in plant. Mol Cell 39(6):447

    Article  CAS  Google Scholar 

  • Pasapula V, Shen G, Kuppu S, Paez-Valencia J, Mendoza M, Hou P, Chen J, Qiu X, Zhu L, Zhang X (2011) Expression of an Arabidopsis vacuolar H+-pyrophosphatase gene (AVP1) in cotton improves drought-and salt tolerance and increases fibre yield in the field conditions. Plant Biotechnol J 9(1):88–99

    Article  CAS  PubMed  Google Scholar 

  • Platten JD, Cotsaftis O, Berthomieu P, Bohnert H, Davenport RJ, Fairbairn DJ, Horie T, Leigh RA, Lin HX, Luan S (2006) Nomenclature for HKT transporters, key determinants of plant salinity tolerance. Trends Plant Sci 11(8):372–374

    Article  CAS  PubMed  Google Scholar 

  • Plett D, Johnson A, Jacobs A, Tester M (2010a) Cell type-specific expression of sodium transporters improves salinity tolerance of rice. GM Crops 1(5):273–275

    Article  PubMed  Google Scholar 

  • Plett D, Safwat G, Gilliham M, Møller IS, Roy S, Shirley N, Jacobs A, Johnson A, Tester M (2010b) Improved salinity tolerance of rice through cell type-specific expression of AtHKT1; 1. PLoS One 5(9):e12571

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pons R, Cornejo M-J, Sanz A (2011) Differential salinity-induced variations in the activity of H+-pumps and Na+/H+ antiporters that are involved in cytoplasm ion homeostasis as a function of genotype and tolerance level in rice cell lines. Plant Physiol Biochem 49(12):1399–1409

    Article  CAS  PubMed  Google Scholar 

  • Qin H, Gu Q, Kuppu S, Sun L, Zhu X, Mishra N, Hu R, Shen G, Zhang J, Zhang Y (2013) Expression of the Arabidopsis vacuolar H+-pyrophosphatase gene AVP1 in peanut to improve drought and salt tolerance. Plant Biotechnol Rep 7(3):345–355

    Article  Google Scholar 

  • Qiu YW, Zhe F, Fu MM, Yuan XH, Luo CC, Yu YB, Feng YZ, Qi W, Li FL (2019) GsMAPK4, a positive regulator of soybean tolerance to salinity stress. J Integr Agric 18(2):372–380

    Article  CAS  Google Scholar 

  • Quan R, Lin H, Mendoza I, Zhang Y, Cao W, Yang Y, Shang M, Chen S, Pardo JM, Guo Y (2007) SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress. Plant Cell 19(4):1415–1431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rajagopal D, Agarwal P, Tyagi W, Singla Pareek SL, Reddy MK, Sopory SK (2007) Pennisetum glaucum Na+/H+ antiporter confers high level of salinity tolerance in transgenic Brassica juncea. Mol Breed 19(2):137–151

    Article  CAS  Google Scholar 

  • Rajendran K, Tester M, Roy SJ (2009) Quantifying the three main components of salinity tolerance in cereals. Plant Cell Environ 32(3):237–249

    Article  CAS  PubMed  Google Scholar 

  • Ratajczak R (2000) Structure, function and regulation of the plant vacuolar H+-translocating ATPase. Biochim Biophys Acta Biomembr 1465(1–2):17–36

    Article  CAS  Google Scholar 

  • Rauf M, Shahzad K, Ali R, Ahmad M, Habib I, Mansoor S, Berkowitz GA, Saeed NA (2014) Cloning and characterization of Na+/H+ antiporter (LfNHX1) gene from a halophyte grass Leptochloa fusca for drought and salt tolerance. Mol Biol Rep 41(3):1669–1682

    Article  CAS  PubMed  Google Scholar 

  • Raza SH, Athar HR, Ashraf M, Hameed A (2007) Glycinebetaine-induced modulation of antioxidant enzymes activities and ion accumulation in two wheat cultivars differing in salt tolerance. Environ Exp Bot 60(3):368–376

    Article  CAS  Google Scholar 

  • Reddy INBL, Kim B-K, Yoon I-S, Kim K-H, Kwon T-R (2017) Salt tolerance in rice: focus on mechanisms and approaches. Rice Sci 24(3):123–144

    Article  Google Scholar 

  • Redillas MCFR, Park SH, Lee JW, Kim YS, Jeong JS, Jung H, Bang SW, Hahn TR, Kim JK (2012) Accumulation of trehalose increases soluble sugar contents in rice plants conferring tolerance to drought and salt stress. Plant Biotechnol Rep 6(1):89–96

    Article  Google Scholar 

  • Ren ZH, Gao JP, Li LG, Cai XL, Huang W, Chao DY, Zhu MZ, Wang ZY, Luan S, Lin HX (2005) A rice quantitative trait locus for salt tolerance encodes a sodium transporter. Nat Genet 37(10):1141

    Article  CAS  PubMed  Google Scholar 

  • Ren Z, He S, Zhou Y-y, Zhao N, Jiang T, Zhai H, Liu Q (2020) A sucrose non-fermenting-1-related protein kinase-1 gene, IbSnRK1, confers salt, drought and cold tolerance in sweet potato. Crop J. https://doi.org/10.1016/j.cj.2020.04.010

  • Rengasamy P (2010) Soil processes affecting crop production in salt-affected soils. Funct Plant Biol 37(7):613–620

    Article  Google Scholar 

  • Rodriguez HG, Roberts JK, Jordan WR, Drew MC (1997) Growth, water relations, and accumulation of organic and inorganic solutes in roots of maize seedlings during salt stress. Plant Physiol 113(3):881–893

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Roy S, Huang W, Evrard A, Schmoeckel S, Zafar Z, Tester M (2013) A novel protein kinase involved in Na+ exclusion revealed from positional cloning. Plant Cell Environ 36(3):553–568

    Article  CAS  PubMed  Google Scholar 

  • Roy SJ, Negrão S, Tester M (2014) Salt resistant crop plants. Curr Opin Biotechnol 26:115–124

    Article  CAS  PubMed  Google Scholar 

  • Roychoudhury A, Banerjee A, Lahiri V (2015) Metabolic and molecular-genetic regulation of proline signaling and itscross-talk with major effectors mediates abiotic stress tolerance in plants. Turk J Bot 39(6):887–910

    Article  CAS  Google Scholar 

  • Rus A, Lee BH, Muñoz Mayor A, Sharkhuu A, Miura K, Zhu JK, Bressan RA, Hasegawa PM (2004) AtHKT1 facilitates Na+ homeostasis and K+ nutrition in planta. Plant Physiol 136(1):2500–2511

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryu H, Cho Y-G (2015) Plant hormones in salt stress tolerance. J Plant Biol 58(3):147–155

    Article  CAS  Google Scholar 

  • Sade N, Vinocur BJ, Diber A, Shatil A, Ronen G, Nissan H, Wallach R, Karchi H, Moshelion M (2009) Improving plant stress tolerance and yield production: is the tonoplast aquaporin SlTIP2; 2 a key to isohydric to anisohydric conversion? New Phytol 181(3):651–661

    Article  CAS  PubMed  Google Scholar 

  • Saeng-ngam S, Takpirom W, Buaboocha T, Chadchawan S (2012) The role of the OsCam1–1 salt stress sensor in ABA accumulation and salt tolerance in rice. J Plant Biol 55(3):198–208

    Article  CAS  Google Scholar 

  • Sah SK, Reddy KR, Li J (2016) Abscisic acid and abiotic stress tolerance in crop plants. Front Plant Sci 7:571

    Article  PubMed  PubMed Central  Google Scholar 

  • Sairam RK, Tyagi A (2004) Physiology and molecular biology of salinity stress tolerance in plants. Curr Sci 86:407–421

    CAS  Google Scholar 

  • Santi S, Locci G, Monte R, Pinton R, Varanini Z (2003) Induction of nitrate uptake in maize roots: expression of a putative high-affinity nitrate transporter and plasma membrane H+-ATPase isoforms. J Exp Bot 54(389):1851–1864

    Article  CAS  PubMed  Google Scholar 

  • Sarkar T, Thankappan R, Kumar A, Mishra GP, Dobaria JR (2014) Heterologous expression of the AtDREB1A gene in transgenic peanut-conferred tolerance to drought and salinity stresses. PLoS One 9(12):e110507

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Schachtman DP, Schroeder JI (1994) Structure and transport mechanism of a high-affinity potassium uptake transporter from higher plants. Nature 370(6491):655–658. https://doi.org/10.1038/370655a0

    Article  CAS  PubMed  Google Scholar 

  • Schilling RK, Marschner P, Shavrukov Y, Berger B, Tester M, Roy SJ, Plett DC (2014) Expression of the A rabidopsis vacuolar H+-pyrophosphatase gene (AVP 1) improves the shoot biomass of transgenic barley and increases grain yield in a saline field. Plant Biotechnol J 12(3):378–386

    Article  CAS  PubMed  Google Scholar 

  • Schmidt R, Mieulet D, Hubberten HM, Obata T, Hoefgen R, Fernie AR, Fisahn J, San Segundo B, Guiderdoni E, Schippers JHM (2013) SALT-RESPONSIVE ERF1 regulates reactive oxygen species–dependent signaling during the initial response to salt stress in rice. Plant Cell 25(6):2115–2131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Serrano R, Mulet JM, Rios G, Marquez JA, De Larrinoa IF, Leube MP, Mendizabal I, Pascual Ahuir A, Proft M, Ros R (1999) A glimpse of the mechanisms of ion homeostasis during salt stress. J Exp Bot:1023–1036

  • Seung D, Risopatron JPM, Jones BJ, Marc J (2012) Circadian clock-dependent gating in ABA signalling networks. Protoplasma 249(3):445–457

    Article  CAS  PubMed  Google Scholar 

  • Sewelam N, Oshima Y, Mitsuda N, Ohme Takagi M (2014) A step towards understanding plant responses to multiple environmental stresses: a genome-wide study. Plant Cell Environ 37(9):2024–2035

    Article  CAS  PubMed  Google Scholar 

  • Shabala S, Bose J, Hedrich R (2014) Salt bladders: do they matter? Trends Plant Sci 19(11):687–691

    Article  CAS  PubMed  Google Scholar 

  • Sharma N, Panchal S, Sanan-Mishra N (2015) Protocol for artificial microRNA mediated over-expression of miR820 in indica rice. Am J Plant Sci 6(12):1951

    Article  CAS  Google Scholar 

  • Sharma A, Shahzad B, Kumar V, Kohli SK, Sidhu GPS, Bali AS, Handa N, Kapoor D, Bhardwaj R, Zheng B (2019) Phytohormones regulate accumulation of osmolytes under abiotic stress. Biomolecules 9(7):285

    Article  CAS  PubMed Central  Google Scholar 

  • Shen G, Wei J, Qiu X, Hu R, Kuppu S, Auld D, Blumwald E, Gaxiola R, Payton P, Zhang H (2015) Co-overexpression of AVP1 and AtNHX1 in cotton further improves drought and salt tolerance in transgenic cotton plants. Plant Mol Biol Report 33(2):167–177

    Article  CAS  Google Scholar 

  • Sheveleva E, Chmara W, Bohnert HJ, Jensen RG (1997) Increased salt and drought tolerance by D-ononitol production in transgenic Nicotiana tabacum L. Plant Physiol 115(3):1211–1219

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shi H, Lee BH, Wu SJ, Zhu JK (2003) Overexpression of a plasma membrane Na+/H+ antiporter gene improves salt tolerance in Arabidopsis thaliana. Nat Biotechnol 21(1):81

    Article  CAS  PubMed  Google Scholar 

  • Singh N, Mishra A, Jha B (2014) Ectopic over-expression of peroxisomal ascorbate peroxidase (SbpAPX) gene confers salt stress tolerance in transgenic peanut (Arachis hypogaea). Gene 547(1):119–125

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Kumar J, Singh S, Singh VP, Prasad SM (2015) Roles of osmoprotectants in improving salinity and drought tolerance in plants: a review. Rev Environ Sci Biotechnol 14(3):407–426

    Article  CAS  Google Scholar 

  • Sirault XRR, James RA, Furbank RT (2009) A new screening method for osmotic component of salinity tolerance in cereals using infrared thermography. Funct Plant Biol 36(11):970–977

    Article  CAS  PubMed  Google Scholar 

  • Song SY, Chen Y, Chen J, Dai XY, Zhang WH (2011) Physiological mechanisms underlying OsNAC5-dependent tolerance of rice plants to abiotic stress. Planta 234(2):331–345

    Article  CAS  PubMed  Google Scholar 

  • Steinhorst L, Kudla J (2013) Calcium and reactive oxygen species rule the waves of signaling. Plant Physiol 163(2):471–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Stephan AB, Kunz HH, Yang E, Schroeder JI (2016) Rapid hyperosmotic-induced Ca2+ responses in Arabidopsis thaliana exhibit sensory potentiation and involvement of plastidial KEA transporters. Proc Natl Acad Sci U S A 113(35):E5242–E5249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Su J-H, Bai T-H, Wang F, Bao A-K (2019) Overexpression of Arabidopsis H+-pyrophosphatase improves the growth of alfalfa under long-term salinity, drought conditions and phosphate deficiency. Czech J Genet Plant Breed 55(4):156–161

    Article  CAS  Google Scholar 

  • Suárez R, Calderón C, Iturriaga G (2009) Enhanced tolerance to multiple abiotic stresses in transgenic alfalfa accumulating trehalose. Crop Sci 49(5):1791–1799

    Article  CAS  Google Scholar 

  • Sun J, Dai S, Wang R, Chen S, Li N, Zhou X, Lu C, Shen X, Zheng X, Hu Z (2009) Calcium mediates root K+/Na+ homeostasis in poplar species differing in salt tolerance. Tree Physiol 29(9):1175–1186

    Article  CAS  PubMed  Google Scholar 

  • Sun WH, Duan M, Shu DF, Yang S, Meng QW (2010) Over-expression of StAPX in tobacco improves seed germination and increases early seedling tolerance to salinity and osmotic stresses. Plant Cell Rep 29(8):917–926

    Article  CAS  PubMed  Google Scholar 

  • Sun B, Zhao Y, Shi S, Yang M, Xiao K (2019a) TaZFP1, a C2H2 type-ZFP gene of T. aestivum, mediates salt stress tolerance of plants by modulating diverse stress-defensive physiological processes. Plant Physiol Biochem 136:127–142

    Article  CAS  PubMed  Google Scholar 

  • Sun TJ, Fan L, Yang J, Cao RZ, Yang CY, Zhang J, Wang DM (2019b) A Glycine max sodium/hydrogen exchanger enhances salt tolerance through maintaining higher Na+ efflux rate and K+/Na+ ratio in Arabidopsis. BMC Plant Biol 19(1):1–10

    Article  Google Scholar 

  • Surekha C, Kumari KN, Aruna L, Suneetha G, Arundhati A, Kishor PK (2014) Expression of the Vigna aconitifolia P5CSF129A gene in transgenic pigeonpea enhances proline accumulation and salt tolerance. Plant Cell Tissue Organ Cult 116(1):27–36

    Article  CAS  Google Scholar 

  • Suzuki N, Koussevitzky S, Mittler R, Miller G (2012) ROS and redox signalling in the response of plants to abiotic stress. Plant Cell Environ 35(2):259–270

    Article  CAS  PubMed  Google Scholar 

  • Suzuki K, Yamaji N, Costa A, Okuma E, Kobayashi NI, Kashiwagi T, Katsuhara M, Wang C, Tanoi K, Murata Y (2016) OsHKT1; 4-mediated Na+ transport in stems contributes to Na+ exclusion from leaf blades of rice at the reproductive growth stage upon salt stress. BMC Plant Biol 16(1):22

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Tang RJ, Liu H, Bao Y, Lv QD, Yang L, Zhang HX (2010) The woody plant poplar has a functionally conserved salt overly sensitive pathway in response to salinity stress. Plant Mol Biol 74(4–5):367–380

    Article  CAS  PubMed  Google Scholar 

  • Tang RJ, Yang Y, Yang L, Liu H, Wang CT, Yu MM, Gao XS, Zhang HX (2014) Poplar calcineurin B-like proteins PtCBL10A and PtCBL10B regulate shoot salt tolerance through interaction with PtSOS2 in the vacuolar membrane. Plant Cell Environ 37(3):573–588

    Article  CAS  PubMed  Google Scholar 

  • Tang R-J, Wang C, Li K, Luan S (2020) The CBL–CIPK calcium signaling network: Unified paradigm from 20 years of discoveries. Trends Plant Sci 25(6):604–607

  • Tian N, Wang J, Xu ZQ (2011) Overexpression of Na+/H+ antiporter gene AtNHX1 from Arabidopsis thaliana improves the salt tolerance of kiwifruit (Actinidia deliciosa). S Afr J Bot 77(1):160–169

    Article  CAS  Google Scholar 

  • Tracy FE, Gilliham M, Dodd AN, Webb AAR, Tester M (2008) NaCl-induced changes in cytosolic free Ca2+ in Arabidopsis thaliana are heterogeneous and modified by external ionic composition. Plant Cell Environ 31(8):1063–1073

    Article  CAS  PubMed  Google Scholar 

  • Tran LSP, Nakashima K, Sakuma Y, Simpson SD, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K, Yamaguchi Shinozaki K (2004) Isolation and functional analysis of Arabidopsis stress-inducible NAC transcription factors that bind to a drought-responsive cis-element in the early responsive to dehydration stress 1 promoter. Plant Cell 16(9):2481–2498

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tripathi V, Parasuraman B, Laxmi A, Chattopadhyay D (2009) CIPK6, a CBL-interacting protein kinase is required for development and salt tolerance in plants. Plant J 58(5):778–790

    Article  CAS  PubMed  Google Scholar 

  • Van Zelm E, Zhang Y, Testerink C (2020) Salt tolerance mechanisms of plants. Annu Rev Plant Biol 71:403–433

    Article  PubMed  CAS  Google Scholar 

  • Verma D, Singla Pareek SL, Rajagopal D, Reddy MK, Sopory SK (2007) Functional validation of a novel isoform of Na+/H+ antiporter from Pennisetum glaucum for enhancing salinity tolerance in rice. J Biosci 32(3):621–628

    Article  CAS  PubMed  Google Scholar 

  • Verma V, Ravindran P, Kumar PP (2016) Plant hormone-mediated regulation of stress responses. BMC Plant Biol 16(1):86

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Verslues PE, Agarwal M, Katiyar Agarwal S, Zhu J, Zhu JK (2006) Methods and concepts in quantifying resistance to drought, salt and freezing, abiotic stresses that affect plant water status. Plant J 45(4):523–539

    Article  CAS  PubMed  Google Scholar 

  • Wang M, Gu D, Liu T, Wang Z, Guo X, Hou W, Bai Y, Chen X, Wang G (2007) Overexpression of a putative maize calcineurin B-like protein in Arabidopsis confers salt tolerance. Plant Mol Biol 65(6):733–746

    Article  CAS  PubMed  Google Scholar 

  • Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C (2008) Overexpression of a rice OsDREB1F gene increases salt, drought, and low temperature tolerance in both Arabidopsis and rice. Plant Mol Biol 67(6):589–602

    Article  CAS  PubMed  Google Scholar 

  • Wang L, He X, Zhao Y, Shen Y, Huang Z (2011) Wheat vacuolar H+-ATPase subunit B cloning and its involvement in salt tolerance. Planta 234(1):1–7

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Hou X, Tang J, Wang Z, Wang S, Jiang F, Li Y (2012a) A novel cold-inducible gene from Pak-choi (Brassica campestris ssp. chinensis), BcWRKY46, enhances the cold, salt and dehydration stress tolerance in transgenic tobacco. Mol Biol Rep 39(4):4553–4564

    Article  CAS  PubMed  Google Scholar 

  • Wang RK, Li LL, Cao ZH, Zhao Q, Li M, Zhang LY, Hao YJ (2012b) Molecular cloning and functional characterization of a novel apple MdCIPK6L gene reveals its involvement in multiple abiotic stress tolerance in transgenic plants. Plant Mol Biol 79(1–2):123–135

    Article  CAS  PubMed  Google Scholar 

  • Wang F, Jing W, Zhang W (2014) The mitogen-activated protein kinase cascade MKK1–MPK4 mediates salt signaling in rice. Plant Sci 227:181–189

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Zhou A, Li Y, Li S, Zhang X, Che D (2016) Overexpression of IrlVHA-c, a vacuolar-type H+-ATPase c subunit gene from Iris lactea, enhances salt tolerance in tobacco. Plant Mol Biol Report 34(5):877–885

    Article  CAS  Google Scholar 

  • Wang Y, Jiang L, Chen J, Tao L, An Y, Cai H, Guo C (2018) Overexpression of the alfalfa WRKY11 gene enhances salt tolerance in soybean. PLoS One 13(2)

  • Wang L, Liu Y, Li D, Feng S, Yang J, Zhang J, Zhang J, Wang D, Gan Y (2019) Improving salt tolerance in potato through overexpression of AtHKT1 gene. BMC Plant Biol 19(1):357

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wani SH, Kumar V, Khare T, Guddimalli R, Parveda M, Solymosi K, Suprasanna P, Kishor PK (2020) Engineering salinity tolerance in plants: progress and prospects. Planta 251(4):1–29

    Article  CAS  Google Scholar 

  • Wei W, Li QT, Chu YN, Reiter RJ, Yu XM, Zhu DH, Zhang WK, Ma B, Lin Q, Zhang JS (2014) Melatonin enhances plant growth and abiotic stress tolerance in soybean plants. J Exp Bot 66(3):695–707

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Weiner H, Stitt M, Heldt HW (1987) Subcellular compartmentation of pyrophosphate and alkaline pyrophosphatase in leaves. Biochim Biophys Acta Bioenerg 893(1):13–21

    Article  CAS  Google Scholar 

  • Weinl S, Kudla J (2009) The CBL–CIPK Ca2+−decoding signaling network: function and perspectives. New Phytol 184(3):517–528

    Article  CAS  PubMed  Google Scholar 

  • Wu H (2018) Plant salt tolerance and Na+ sensing and transport. Crop J 6(3):215–225

    Article  Google Scholar 

  • Wu CA, Yang GD, Meng QW, Zheng CC (2004) The cotton GhNHX1 gene encoding a novel putative tonoplast Na+/H+ antiporter plays an important role in salt stress. Plant Cell Physiol 45(5):600–607

    Article  CAS  PubMed  Google Scholar 

  • Wu L, Fan Z, Guo L, Li Y, Chen ZL, Qu LJ (2005) Over-expression of the bacterial nhaA gene in rice enhances salt and drought tolerance. Plant Sci 168(2):297–302

    Article  CAS  Google Scholar 

  • Wu W, Su Q, Xia X, Wang Y, Luan Y, An L (2008) The Suaeda liaotungensis kitag betaine aldehyde dehydrogenase gene improves salt tolerance of transgenic maize mediated with minimum linear length of DNA fragment. Euphytica 159(1–2):17–25

    CAS  Google Scholar 

  • Wu G-Q, Feng R-J, Wang S-M, Wang C-M, Bao A-K, Wei L, Yuan H-J (2015) Co-expression of xerophyte Zygophyllum xanthoxylum ZxNHX and ZxVP1–1 confers enhanced salinity tolerance in chimeric sugar beet (Beta vulgaris L.). Front Plant Sci 6:581

    PubMed  PubMed Central  Google Scholar 

  • Wu J, Jiang Y, Liang Y, Chen L, Chen W, Cheng B (2019) Expression of the maize MYB transcription factor ZmMYB3R enhances drought and salt stress tolerance in transgenic plants. Plant Physiol Biochem 137:179–188

    Article  CAS  PubMed  Google Scholar 

  • Xiang Y, Huang Y, Xiong L (2007) Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement. Plant Physiol 144(3):1416–1428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiang Y, Tang N, Du H, Ye H, Xiong L (2008) Characterization of OsbZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiol 148(4):1938–1952

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Y, Ling T, Han Y, Liu K, Zheng Q, Huang L, Yuan X, He Z, Hu B, Fang L (2008) Carbon monoxide enhances salt tolerance by nitric oxide-mediated maintenance of ion homeostasis and up-regulation of antioxidant defence in wheat seedling roots. Plant Cell Environ 31(12):1864–1881

    Article  CAS  PubMed  Google Scholar 

  • Xing Y, Jia W, Zhang J (2008) AtMKK1 mediates ABA-induced CAT1 expression and H2O2 production via AtMPK6-coupled signaling in Arabidopsis. Plant J 54(3):440–451

    Article  CAS  PubMed  Google Scholar 

  • Xiong L, Yang Y (2003) Disease resistance and abiotic stress tolerance in rice are inversely modulated by an abscisic acid–inducible mitogen-activated protein kinase. Plant Cell 15(3):745–759

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong H, Li J, Liu P, Duan J, Zhao Y, Guo X, Li Y, Zhang H, Ali J, Li Z (2014) Overexpression of OsMYB48–1, a novel MYB-related transcription factor, enhances drought and salinity tolerance in rice. PLoS One 9(3):e92913

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xu C, Zheng L, Gao C, Wang C, Liu G, Jiang J, Wang Y (2011a) Ovexpression of a vacuolar H+-ATPase c subunit gene mediates physiological changes leading to enhanced salt tolerance in transgenic tobacco. Plant Mol Biol Report 29(2):424–430

    Article  CAS  Google Scholar 

  • Xu G-Y, Rocha PS, Wang M-L, Xu M-L, Cui Y-C, Li L-Y, Zhu Y-X, Xia X (2011b) A novel rice calmodulin-like gene, OsMSR2, enhances drought and salt tolerance and increases ABA sensitivity in Arabidopsis. Planta 234(1):47–59

    Article  CAS  PubMed  Google Scholar 

  • Xue ZY, Zhi DY, Xue GP, Zhang H, Zhao YX, Xia GM (2004) Enhanced salt tolerance of transgenic wheat (Tritivum aestivum L.) expressing a vacuolar Na+/H+ antiporter gene with improved grain yields in saline soils in the field and a reduced level of leaf Na+. Plant Sci 167(4):849–859

    Article  CAS  Google Scholar 

  • Xue G-P, Way HM, Richardson T, Drenth J, Joyce PA, McIntyre CL (2011) Overexpression of TaNAC69 leads to enhanced transcript levels of stress up-regulated genes and dehydration tolerance in bread wheat. Mol Plant 4(4):697–712

    Article  CAS  PubMed  Google Scholar 

  • Yadav NS, Shukla PS, Jha A, Agarwal PK, Jha B (2012) The SbSOS1 gene from the extreme halophyte Salicornia brachiata enhances Na+ loading in xylem and confers salt tolerance in transgenic tobacco. BMC Plant Biol 12(1):188

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang Y, Guo Y (2018a) Elucidating the molecular mechanisms mediating plant salt-stress responses. New Phytol 217(2):523–539

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Guo Y (2018b) Unraveling salt stress signaling in plants. J Integr Plant Biol 60(9):796–804

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Liang Z, Wen X, Lu C (2008) Genetic engineering of the biosynthesis of glycinebetaine leads to increased tolerance of photosynthesis to salt stress in transgenic tobacco plants. Plant Mol Biol 66(1–2):73

    Article  CAS  PubMed  Google Scholar 

  • Yang O, Popova OV, Süthoff U, Lüking I, Dietz KJ, Golldack D (2009a) The Arabidopsis basic leucine zipper transcription factor AtbZIP24 regulates complex transcriptional networks involved in abiotic stress resistance. Gene 436(1–2):45–55

    Article  CAS  PubMed  Google Scholar 

  • Yang Q, Chen ZZ, Zhou XF, Yin HB, Li X, Xin XF, Hong XH, Zhu JK, Gong Z (2009b) Overexpression of SOS (Salt Overly Sensitive) genes increases salt tolerance in transgenic Arabidopsis. Mol Plant 2(1):22–31

    Article  CAS  PubMed  Google Scholar 

  • Yang A, Dai X, Zhang WH (2012) A R2R3-type MYB gene, OsMYB2, is involved in salt, cold, and dehydration tolerance in rice. J Exp Bot 63(7):2541–2556

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yarra R, He S-J, Abbagani S, Ma B, Bulle M, Zhang W-K (2012) Overexpression of a wheat Na+/H+ antiporter gene (TaNHX2) enhances tolerance to salt stress in transgenic tomato plants (Solanum lycopersicum L.). Plant Cell Tiiss Org Cult 111 (1):49–57

  • Ying S, Zhang D-F, Li H-Y, Liu Y-H, Shi Y-S, Song Y-C, Wang T-Y, Li Y (2011) Cloning and characterization of a maize SnRK2 protein kinase gene confers enhanced salt tolerance in transgenic Arabidopsis. Plant Cell Rep 30(9):1683–1699

    Article  CAS  PubMed  Google Scholar 

  • Yu L, Nie J, Cao C, Jin Y, Yan M, Wang F, Liu J, Xiao Y, Liang Y, Zhang W (2010) Phosphatidic acid mediates salt stress response by regulation of MPK6 in Arabidopsis thaliana. New Phytol 188(3):762–773

    Article  CAS  PubMed  Google Scholar 

  • Yue Y, Zhang M, Zhang J, Duan L, Li Z (2012) SOS1 gene overexpression increased salt tolerance in transgenic tobacco by maintaining a higher K+/Na+ ratio. J Plant Physiol 169(3):255–261

    Article  CAS  PubMed  Google Scholar 

  • Zhang H-X, Hodson JN, Williams JP, Blumwald E (2001) Engineering salt-tolerant Brassica plants: characterization of yield and seed oil quality in transgenic plants with increased vacuolar sodium accumulation. Proc Natl Acad Sci U S A 98(22):12832–12836

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Jia W, Yang J, Ismail AM (2006a) Role of ABA in integrating plant responses to drought and salt stresses. Field Crop Res 97(1):111–119

    Article  Google Scholar 

  • Zhang Y, Wang L, Liu Y, Zhang Q, Wei Q, Zhang W (2006b) Nitric oxide enhances salt tolerance in maize seedlings through increasing activities of proton-pump and Na+/H+ antiport in the tonoplast. Planta 224(3):545–555

    Article  CAS  PubMed  Google Scholar 

  • Zhang GH, Su Q, An LJ, Wu S (2008) Characterization and expression of a vacuolar Na+/H+ antiporter gene from the monocot halophyte Aeluropus littoralis. Plant Physiol Biochem 46(2):117–126

    Article  CAS  PubMed  Google Scholar 

  • Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y (2009a) Overexpression of the soybean GmERF3 gene, an AP2/ERF type transcription factor for increased tolerances to salt, drought, and diseases in transgenic tobacco. J Exp Bot 60(13):3781–3796

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Lu Y, Yuan Y, Zhang X, Geng J, Chen Y, Cloutier S, McVetty PB, Li G (2009b) Map-based cloning and characterization of a gene controlling hairiness and seed coat color traits in Brassica rapa. Plant Mol Biol 69(5):553–563

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Mao X, Wang C, Jing R (2010) Overexpression of a common wheat gene TaSnRK2. 8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS One 5(12):e16041

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Xi D, Li S, Gao Z, Zhao S, Shi J, Wu C, Guo X (2011) A cotton group C MAP kinase gene, GhMPK2, positively regulates salt and drought tolerance in tobacco. Plant Mol Biol 77(1–2):17–31

    Article  CAS  PubMed  Google Scholar 

  • Zhang D, Jiang S, Pan J, Kong X, Zhou Y, Liu Y, Li D (2014a) The overexpression of a maize mitogen-activated protein kinase gene (Z m MPK 5) confers salt stress tolerance and induces defence responses in tobacco. Plant Biol 16(3):558–570

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Zou D, Li Y, Sun X, Wang N-N, Gong S-Y, Zheng Y, Li X-B (2014b) GhMPK17, a cotton mitogen-activated protein kinase, is involved in plant response to high salinity and osmotic stresses and ABA signaling. PLoS One 9(4):e95642

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhang L, Niu Y, Huridu H, Hao J, Qi Z, Hasi A (2014c) Salicornia europaea L. Na+/H+ antiporter gene improves salt tolerance in transgenic alfalfa (Medicago sativa L.). Genet Mol Res 13(3):5350–5360

    Article  CAS  PubMed  Google Scholar 

  • Zhang Z, Liu H, Sun C, Ma Q, Bu H, Chong K, Xu Y (2018) A C2H2 zinc-finger protein OsZFP213 interacts with OsMAPK3 to enhance salt tolerance in rice. J Plant Physiol 229:100–110

    Article  CAS  PubMed  Google Scholar 

  • Zhang W, Wang N, Yang J, Guo H, Liu Z, Zheng X, Li S, Xiang F (2020a) The salt-induced transcription factor GmMYB84 confers salinity tolerance in soybean. Plant Sci 291:110326

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Chen L, Shi Q, Ren Z (2020b) SlMYB102, an R2R3-type MYB gene, confers salt tolerance in transgenic tomato. Plant Sci 291:110356

    Article  CAS  PubMed  Google Scholar 

  • Zhao F, Guo S, Zhang H, Zhao Y (2006a) Expression of yeast SOD2 in transgenic rice results in increased salt tolerance. Plant Sci 170(2):216–224

    Article  CAS  Google Scholar 

  • Zhao F, Wang Z, Zhang Q, Zhao Y, Zhang H (2006b) RETRACTED ARTICLE: Analysis of the physiological mechanism of salt-tolerant transgenic rice carrying a vacuolar Na+/H+ antiporter gene from Suaeda salsa. J Plant Res 119(2):95–104

    Article  CAS  PubMed  Google Scholar 

  • Zhao MJ, Yin LJ, Zheng JC, Wang YX, Lan JH, Fu JD, Chen M, Xu ZS, Ma YZ (2019) The roles of GmERF135 in improving salt tolerance and decreasing ABA sensitivity in soybean. Front Plant Sci 10:940

    Article  PubMed  PubMed Central  Google Scholar 

  • Zheng X, Chen B, Lu G, Han B (2009) Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochem Biophys Res Commun 379(4):985–989

    Article  CAS  PubMed  Google Scholar 

  • Zhou QY, Tian AG, Zou HF, Xie ZM, Lei G, Huang J, Wang CM, Wang HW, Zhang JS, Chen SY (2008) Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, confer differential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnol J 6(5):486–503

    Article  CAS  PubMed  Google Scholar 

  • Zhou S, Hu W, Deng X, Ma Z, Chen L, Huang C, Wang C, Wang J, He Y, Yang G (2012) Overexpression of the wheat aquaporin gene, TaAQP7, enhances drought tolerance in transgenic tobacco. PLoS One 7(12):e52439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhou Y, Yang P, Cui F, Zhang F, Luo X, Xie J (2016) Transcriptome analysis of salt stress responsiveness in the seedlings of Dongxiang wild rice (Oryza rufipogon Griff.). PLoS One 11(1):e0146242

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhu JK (2002) Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 53(1):247–273

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu JK (2003) Regulation of ion homeostasis under salt stress. Curr Opin Plant Biol 6(5):441–445

    Article  CAS  PubMed  Google Scholar 

  • Zhu JK (2016) Abiotic stress signaling and responses in plants. Cell 167(2):313–324

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhu N, Cheng S, Liu X, Du H, Dai M, Zhou D-X, Yang W, Zhao Y (2015) The R2R3-type MYB gene OsMYB91 has a function in coordinating plant growth and salt stress tolerance in rice. Plant Sci 236:146–156

    Article  CAS  PubMed  Google Scholar 

  • Zhu K, Chen F, Liu J, Chen X, Hewezi T, Cheng Z-MM (2016a) Evolution of an intron-poor cluster of the CIPK gene family and expression in response to drought stress in soybean. Sci Rep 6(1):1–12

    Article  CAS  Google Scholar 

  • Zhu T, Deng X, Zhou X, Zhu L, Zou L, Li P, Zhang D, Lin H (2016b) Ethylene and hydrogen peroxide are involved in brassinosteroid-induced salt tolerance in tomato. Sci Rep 6:35392

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zong J-M, Li X-W, Zhou Y-H, Wang F-W, Wang N, Dong Y-Y, Yuan Y-X, Chen H, Liu X-M, Yao N (2016) The AaDREB1 transcription factor from the cold-tolerant plant Adonis amurensis enhances abiotic stress tolerance in transgenic plant. Int J Mol Sci 17(4):611

    Article  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Natural Science Foundation of China (31972968 and 31771369), National Agri-Industry Technology Research System for Crops of Bast and Leaf Fiber of China (nycytx-19-E06), FAFU Science Fund for Distinguished Young Scholars (xjq201629), FAFU Opening Fund for Key Laboratory of Ministry of Education for Genetics, Breeding and Multiple Utilization of Crops (GBMUC-2019-003).

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization, M.Z.A., Q.J., and L.Z.; investigation, M.Z.A. and L.Z.; writing, M.Z.A.; review, Q.J., A.K.I. and S.N.; editing, M.Z.A., Q.J. and L.Z.; supervision, L.Z.

Corresponding author

Correspondence to Liwu Zhang.

Ethics declarations

Conflict of Interest

The authors declare no conflict of interest.

Additional information

Communicated by: Yann-Rong Lin

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Afzal, M.Z., Jia, Q., Ibrahim, A.K. et al. Mechanisms and Signaling Pathways of Salt Tolerance in Crops: Understanding from the Transgenic Plants. Tropical Plant Biol. 13, 297–320 (2020). https://doi.org/10.1007/s12042-020-09265-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12042-020-09265-0

Keywords

Navigation