Skip to main content
Log in

Selective Photo-epoxidation of (R)-(+)- and (S)-(−)-Limonene by Chiral and Non-Chiral Dioxo-Mo(VI) Complexes Anchored on TiO2-Nanotubes

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

Selective epoxidation of the (R) and (S) isomers of limonene by dioxomolybdenum(VI) complexes anchored covalently on TiO2 nanotubes using UV–Vis light and O2 as the oxidizing agent was evaluated. It is interesting to study the effect of the ligands: bipyridine, terpyridine, and Schiff base on the stereoselective epoxidation of limonene through photostimulated oxygen atom transfer (OAT). OAT activity observed to increase in the following order: Mo(VI)O2(Schiff base)/TiO2-NT < Mo(VI)Cl2O2 (bipyridine)/TiO2-NT < Mo(VI)Cl2O2(terpyridine)/TiO2-NT. Moderate diastereoselectivity to the cis-isomer of complexes with “non-chiral” ligands like bipyridine and terpyridine was displayed. Contrary to the complex with the Schiff base as “chiral” ligand, it showed an increase in diastereoisomeric excess (52%), associated to an asymmetric double induction, assuming a complex metal-oxo sideway interaction with the trisubstituted olefins at the transition state.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 1
Fig. 10
Scheme 2
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

Data Availability

This work was presented to The 6th Latin-American Congress of Photocatalysis, Photochemistry and Photobiology LACP3, from 23 to 28 of September of 2019 at Bogota (https://www.utadeo.edu.co/en/lacp3-2019). The results are part of the thesis doctoral of HM but it is not realized public dissertation yet at the University of Industrial de Santander (https://www.uis.edu.co/webUIS/es/index.jsp).

Code Availability

Not applicable for that section.

References

  1. Brito JA, Royo B, Gómez M (2011) Catal.: an overview of chiral molybdenum complexes applied in enantioselective catalysis. Catal Sci Technol 1:1109–1118

    CAS  Google Scholar 

  2. Nodzewska A, Wadolowska A, Watkinson M (2019) Recent advances in the catalytic oxidation of alkene and alkane substrates using immobilized manganese complexes with nitrogen containing ligands. Coord Chem Rev 382:181–216

    CAS  Google Scholar 

  3. Michel T, Cokoja M, Sieber V, Kühn FE (2012) Selective epoxidation of (+)-limonene employing methyltrioxorhenium as catalyst. J Mol Catal A 358:159–165

    CAS  Google Scholar 

  4. Balcerzak L, Lipok J, Strub D, Lochynski S (2014) Biotransformations of monoterpenes by photoautotrophic micro-organisms. J Appl Microbiol 117:1523–1536

    CAS  PubMed  Google Scholar 

  5. Cubillos J, Vargas M, Reyes J, Villa AL, Montes de Correa C (2010) Effect of the substrate and catalyst chirality on the diastereoselective epoxidation of Limonene using Jacobsen-type catalysts. Chirality 22:403–410

    CAS  PubMed  Google Scholar 

  6. Cubillos J, Vásquez S, Montes de Correa C (2010) Salen manganese(III) complexes as catalysts for R-(+)-limonene oxidation. Appl Catal A 373:57–65

    CAS  Google Scholar 

  7. Młodzik J, Wróblewska A, Makuch E, Wróbel RJ, Michalkiewicz B (2016) Fe/EuroPh catalysts for limonene oxidation to 1,2-epoxylimonene, its diol, carveol, carvone and perillyl alcohol. Catal Today 268:111–120

    Google Scholar 

  8. Katsuki T (1995) Catalytic asymmetric oxidations using optically active (salen)manganese(III) complexes as catalysis. Coord Chem Rev 140:189–214

    CAS  Google Scholar 

  9. Ottenbacher RV, Samsonenko DG, Talsi EP, Bryliakov KP (2014) Highly enantioselective bioinspired epoxidation of electron-deficient olefins with H2O2 on aminopyridine Mn catalysts. ACS Catal 4:1599–1606

    CAS  Google Scholar 

  10. Águila S, Vazquez-Duhalt R, Tinoco R, Rivera M, Pecchi G, Alderete JB (2008) Stereoselective oxidation of R-(+)-limonene by chloroperoxidase from Caldariomyces fumago. Green Chem 10:647–653

    Google Scholar 

  11. Villa AL, Taborda F, Montes de Correa C (2002) Kinetics of limonene epoxidation by hydrogen peroxide on PW-Amberlite. J Mol Catal A 185:269–277

    Google Scholar 

  12. Oliveira P, Machado A, Ramos AM, Fonseca I, Braz Fernandes FM, Botelho do Rego AM, Vital J (2009) MCM-41 anchored manganese salen complexes as catalysts for limonene oxidation. Microporous Mesoporous Mater 120:432–440

    CAS  Google Scholar 

  13. Bhattacharjee S, Anderson JA (2004) Synthesis and characterization of novel chiral sulfonato-salen-manganese(III) complex in a zinc–aluminium LDH host. Chem Commun 554–555.

  14. Saikia L, Srinivas D, Ratnasamy P (2006) Chemo-, regio- and stereo-selective aerial oxidation of limonene to the endo-1,2-epoxide over Mn(Salen)-sulfonated SBA-15. Appl Catal A 309:144–154

    CAS  Google Scholar 

  15. Bakhvalov OV, Fomenko VV, Salakhutdinov NF (2008) Modern methods for the epoxidation of α- and β-pinenes, 3-carene and limonene. Chem Sustain Dev 16:633–691

    Google Scholar 

  16. Tangestaninejad S, Mirkhani V (1998) Polystyrene-bound manganese(III) porphyrin as a heterogeneous catalyst for alkene epoxidation. J Chem Res S (12):788–789

  17. Madadi S, Charbonneau L, Bergeron JY, Kaliaguine S (2020) Aerobic epoxidation of limonene using cobalt substituted mesoporous SBA-16 Part 1: optimization via Response Surface Methodology (RSM). Appl Catal B 260:118049–118062

    CAS  Google Scholar 

  18. Saraiva MS, Nunes CD, Nunes TG, Calhorda MJ (2013) Mo(II) complexes of 8-aminoquinoline and their immobilization in MCM-41. Appl Catal A 455:172–182

    CAS  Google Scholar 

  19. Brito JA, Ladeira S, Teuma E, Royo B, Gómez M (2011) Dioxomolybdenum(VI) complexes containing chiral oxazolines applied in alkenes epoxidation in ionic liquids: a highly diastereoselective catalyst. Appl Catal A 398:88–95

    CAS  Google Scholar 

  20. Fernandes CI, Stenning GBG, Taylor JD, Nunes CD, Vaz PD (2015) Helical channel mesoporous materials with embedded magnetic iron nanoparticles: chiral recognition and implications in asymmetric olefin epoxidation. Adv Synth Catal 357:3127–3140

    CAS  Google Scholar 

  21. Páez CA, Castellanos NJ, Martínez F, Ziarelli F, Agrifoglio G, Páez-Mozo EA, Arzoumanian H (2008) Oxygen atom transfer photocatalyzed by molybdenum(VI) dioxodibromo-(4,4′-dicarboxylate-2,2′-bipyridine) anchored on TiO2. Catal Today 133:619–624

    Google Scholar 

  22. Páez CA, Lozada O, Castellanos NJ, Martínez F, Ziarelli F, Agrifoglio G, Páez-Mozo EA, Arzoumanian H (2009) Arylalkane photo-oxidation under visible light and O2 catalyzed by molybdenum(VI)dioxo-dibromo (4,4′-dicarboxylato-2,2′-bipyridine) anchored on TiO2. J Mol Catal A 299:53–59

    Google Scholar 

  23. Castellanos NJ, Martínez F, Lynen F, Biswas S, Van Der Voort P, Arzoumanian H (2013) Dioxygen activation in photooxidation of diphenylmethane by a dioxomolybdenum(VI) complex anchored covalently onto mesoporous titania. Trans Met Chem 38:119–127

    CAS  Google Scholar 

  24. Martínez H, Cáceres MF, Martínez F, Páez-Mozo EA, Valange S, Castellanos NJ, Molina D, Barrault J, Arzoumanian H (2016) Photo-epoxidation of cyclohexene, cyclooctene and 1-octene with molecular oxygen catalyzed by dichloro dioxo-(4,4′-dicarboxylato-2,2′-bipyridine) molybdenum(VI) grafted on mesoporous TiO2. J Mol Catal A 423:248–255

    Google Scholar 

  25. Martínez H, Amaya AA, Páez-Mozo EA, Martínez F (2018) Highly efficient epoxidation of α-pinene with O2 photocatalyzed by dioxoMo(VI) complex anchored on TiO2 nanotubes. Microporous Mesoporous Mater 265:202–210

    Google Scholar 

  26. Zwettler N, Judmaier ME, Strohmeier L, Belaj F, Mösch-Zanetti NC (2016) Oxygen activation and catalytic aerobic oxidation by Mo(IV)/(VI) complexes with functionalized iminophenolate ligands. Dalton Trans 45:14549–14560

    CAS  PubMed  Google Scholar 

  27. Fen LB, Han TK, Nee NM, Ang BC, Johan MR (2011) Physico-chemical properties of titania nanotubes synthesized via hydrothermal and annealing treatment. Appl Surf Sci 258:431–435

    CAS  Google Scholar 

  28. Arzoumanian H, Castellanos NJ, Martínez F, Paez-Mozo EA, Ziarelli F (2010) Silicon-assisted direct covalent grafting on metal oxide surfaces: synthesis and characterization of carboxylate N, N′-ligands on TiO2. Eur J Inorg Chem 11:1633–1641

    Google Scholar 

  29. Romanowski G, Kira J (2016) Chiral molybdenum(VI) complexes with tridentate Schiff bases derived from S(+)-1-amino-2-propanol: synthesis, characterization and catalytic activity in the oxidation of prochiral sulfides and olefin. Polyhedron 117:352–358

    CAS  Google Scholar 

  30. Herrmann WA, Lobmaier GM, Priermeier T, Mattner MR, Scharbert B (1997) New dioxomolybdenum(VI) catalysts for the selective oxidation of terminal n-alkenes with molecular oxygen. J Mol Catal A 117:455–469

    Google Scholar 

  31. Castellucci E, Angeloni L (1979) IR and Raman spectra of a 2,2′-bipyridine single crystal: internal modes. Chem Phys 43:365–373

    CAS  Google Scholar 

  32. Niven ML, Percy GC (1978) The infrared spectra (3500–140 cm−1) of the 2,2′-bipyridine, 2-aminomethylpyridine and ethylenediamine adducts and the sodium Tris-compounds of cobalt(II), nickel(II) and zinc(II) acetylacetonates. Trans Met Chem 3:267–271

    CAS  Google Scholar 

  33. Romanowski G, Kira J, Wera M (2018) Synthesis, structure, spectroscopic characterization and catalytic activity of chiral dioxidomolybdenum(VI) Schiff base complexes derived from R(−)-2-amino-1-propanol. Inorg Chim Acta 483:156–164

    CAS  Google Scholar 

  34. Hearne GR, Zhao J, Dawe AM, Pischedda V, Maaza M, Nieuwoudt MK, Kibasomba P (2004) Effect of grain size on structural transitions in anatase TiO2: a Raman spectroscopy study at high pressure. Phys Rev 70:134102–134110

    Google Scholar 

  35. Sugimoto H, Harihara M, Shiro M, Sugimoto K, Tanaka K, Miyake H, Tsukube H (2005) Dioxo-molybdenum(VI) and mono-oxo-molybdenum(IV) complexes supported by new aliphatic dithiolene ligands: new models with weakened MoO bond characters for the arsenite oxidase active site. Inorg Chem 44:6386–6392

    CAS  PubMed  Google Scholar 

  36. Brolo AG, Jiang Z, Irish DE (2003) The orientation of 2,2′-bipyridine adsorbed at a SERS-active Au(1 1 1) electrode surface. J Electroanal Chem 547:163–172

    CAS  Google Scholar 

  37. Castellucci E, Angeloni L, Neto N, Sbrana G (1979) IR and Raman spectra of a.2,2′-bipyridine single crystal: internal modes. Chem Phys 43:365–373

    CAS  Google Scholar 

  38. Heyde ME, Gill D, Kilponen RG, Rimai L (1971) Raman spectra of Schiff bases of retinal (models of visual photoreceptors). J Am Chem Soc 93:6766–6780

    Google Scholar 

  39. Sant’Ana AC, Alves WA, Santos RHA, Ferreira AMD, Temperini MLA (2003) The adsorption of 2,2′:6′,2″-terpyridine, 4′-(5-mercaptopentyl)-2,2′:6′,2″-terpyridinyl, and perchlorate on silver and copper surfaces monitored by SERS. Polyhedron 22:1673–1682

    Google Scholar 

  40. Bocian A, Brykczynska D, Kubicki M, Hnatejko Z, Walesa-Chorab M, Gorczynski A, Patroniak V (2019) Complexation behavior of 6,6″-dimethyl-2,2′:6′,2″-terpyridine ligand with Co(II), Au(III), Ag(I), Zn(II) and Cd(II) ions: synthesis, spectroscopic characterization and unusual structural motifs. Polyhedron 157:249–261

    CAS  Google Scholar 

  41. Thommes M, Kaneko K, Neimark AV, Oliver JP, Rodriguez-Reinero F, Rouquerol J, Sing KSW (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87:1051–1069

    CAS  Google Scholar 

  42. Bavykin DV, Parmon VN, Lapkin AA, Walsh FC (2004) The effect of hydrothermal conditions on the mesoporous structure of TiO2 nanotubes. J Mater Chem 14:3370–3377

    CAS  Google Scholar 

  43. Ribbens S, Meynen V, Van Tendeloo G, Ke X, Mertens M, Maes BUW, Cool P, Vansant EF (2008) Development of photocatalytic efficient Ti-based nanotubes and nanoribbons by conventional and microwave assisted synthesis strategies. Microporous Mesoporous Mater 114:401–409

    CAS  Google Scholar 

  44. Romanowski G, Kira J (2017) Synthesis, characterization and catalytic activity of dioxidomolybdenum(VI) complexes with tridentate Schiff bases derived from 1R, 2S(−)-norephedrine. Polyhedron 134:50–58

    CAS  Google Scholar 

  45. Wu ZY, Wang W (2015) Terpyridine chelate complex-functionalized single-walled carbon nanotubes: synthesis and redox properties. Fullerenes Nanotubes Carbon Nanostruct 23:131–141

    CAS  Google Scholar 

  46. Liu N, Chen X, Zhang J, Schwank JW (2014) A review on TiO2-based nanotubes synthesized via hydrothermal method: formation mechanism, structure modification, and photocatalytic applications. Catal Today 225:34–51

    CAS  Google Scholar 

  47. Ciriminna R, Parrino F, De Pasquale C, Palmisano L, Pagliaro M (2018) Photocatalytic partial oxidation of limonene to 1,2 limonene oxide. Chem Commun 54:1008–1011

    CAS  Google Scholar 

  48. Judmaier ME, Holzer C, Volpe M, Mösch-Zanetti NC (2012) Molybdenum(VI) dioxo complexes employing Schiff base ligands with an intramolecular donor for highly selective olefin epoxidation. Inorg Chem 51:9956–9966

    CAS  PubMed  Google Scholar 

  49. Masamme S, Choy W, Petersen JS, Sita LR (1985) Double asymmetric synthesis and a new strategy for stereochemical control in organic synthesis. Angew Chem Int Ed Engl 24:1–30

    Google Scholar 

Download references

Acknowledgements

We gratefully recognize the financial support by the Universidad Industrial de Santander—UIS (Project 1868). H. M. author is grateful to COLCIENCIAS (Doctorados Nacionales 647 Program) for the scholarship program. The authors thank Parque Tecnológico Guatiguará-UIS by physicochemical characterization analyzes.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed equally to this work. HM prepared, characterized the catalysts, and performed the photo-catalytic measurements and interpretation. EP and FM designed the experiments and contributed to the interpretation of the experimental results. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Fernando Martínez O..

Ethics declarations

Conflict of interest

The authors declare that they have no conflicts of interest to reveal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 3979 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martínez Q., H., Paez-Mozo, E.A. & Martínez O., F. Selective Photo-epoxidation of (R)-(+)- and (S)-(−)-Limonene by Chiral and Non-Chiral Dioxo-Mo(VI) Complexes Anchored on TiO2-Nanotubes. Top Catal 64, 36–50 (2021). https://doi.org/10.1007/s11244-020-01355-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01355-3

Keywords

Navigation