Skip to main content
Log in

Possible quantum paraelectric state in Kitaev spin liquid candidate H3LiIr2O6

  • Article
  • Published:
Science China Physics, Mechanics & Astronomy Aims and scope Submit manuscript

Abstract

A new quantum spin liquid (QSL) candidate material H3LiIr2O6 was synthesized recently and was found not to show any magnetic order or phase transition down to low temperatures. In this work, we study the quantum dynamics of the hydrogen ions, i.e., protons, in this material by combining first-principles calculations and theoretical analysis. We show that each proton and its adjacent oxygen ions form an electric dipole. The dipole interactions and the proton tunneling are captured by a transverse-field Ising model with a quantum disordered paraelectric ground state. The dipole excitations have an energy gap Δd ≃ 60 meV, and can be probed by the infrared optical spectroscopy and the dielectric response. We argue that the electric dipole fluctuations renormalize the magnetic interactions in H3LiIr2O6 and lead to a Kitaev QSL state.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. L. Balents, Nature 464, 199 (2010).

    Article  ADS  Google Scholar 

  2. Y. Zhou, K. Kanoda, and T. K. Ng, Rev. Mod. Phys. 89, 025003 (2017), arXiv: 1607.03228.

    Article  ADS  Google Scholar 

  3. X.-G. Wen, Quantum Field Theory of Many-Body Systems: From the Origin of Sound to an Origin of Light and Electrons (Oxford University Press, Oxford, 2004).

    Google Scholar 

  4. X. G. Wen, Phys. Rev. B 65, 165113 (2002), arXiv: cond-mat/0107071.

    Article  ADS  Google Scholar 

  5. P. W. Anderson, Science 235, 1196 (1987).

    Article  ADS  Google Scholar 

  6. P. A. Lee, N. Nagaosa, and X.-G. Wen, Rev. Mod. Phys. 78, 17 (2006), arXiv: arXiv:cond-mat/0410445.

    Article  ADS  Google Scholar 

  7. A. Y. Kitaev, Ann. Phys. 303, 2 (2003).

    Article  ADS  Google Scholar 

  8. A. Kitaev, Ann. Phys. 321, 2 (2006), arXiv: cond-mat/0506438.

    Article  ADS  Google Scholar 

  9. G. Jackeli, and G. Khaliullin, Phys. Rev. Lett. 102, 017205 (2009), arXiv: 0809.4658.

    Article  ADS  Google Scholar 

  10. K. W. Plumb, J. P. Clancy, L. J. Sandilands, V. V. Shankar, Y. F. Hu, K. S. Burch, H. Y. Kee, and Y. J. Kim, Phys. Rev. B 90, 041112 (2014), arXiv: 1403.0883.

    Article  ADS  Google Scholar 

  11. X. Liu, T. Berlijn, W. G. Yin, W. Ku, A. Tsvelik, Y. J. Kim, H. Gretarsson, Y. Singh, P. Gegenwart, and J. P. Hill, Phys. Rev. B 83, 220403 (2011), arXiv: 1104.4046.

    Article  ADS  Google Scholar 

  12. S. K. Choi, R. Coldea, A. N. Kolmogorov, T. Lancaster, I. I. Mazin, S. J. Blundell, P. G. Radaelli, Y. Singh, P. Gegenwart, K. R. Choi, S. W. Cheong, P. J. Baker, C. Stock, and J. Taylor, Phys. Rev. Lett. 108, 127204 (2012), arXiv: 1202.1268.

    Article  ADS  Google Scholar 

  13. F. Ye, S. Chi, H. Cao, B. C. Chakoumakos, J. A. Fernandez-Baca, R. Custelcean, T. F. Qi, O. B. Korneta, and G. Cao, Phys. Rev. B 85, 180403 (2012), arXiv: 1202.3995.

    Article  ADS  Google Scholar 

  14. J. A. Sears, M. Songvilay, K. W. Plumb, J. P. Clancy, Y. Qiu, Y. Zhao, D. Parshall, and Y. J. Kim, Phys. Rev. B 91, 144420 (2015), arXiv: 1411.4610.

    Article  ADS  Google Scholar 

  15. R. D. Johnson, S. C. Williams, A. A. Haghighirad, J. Singleton, V. Zapf, P. Manuel, I. I. Mazin, Y. Li, H. O. Jeschke, R. Valentí, and R. Coldea, Phys. Rev. B 92, 235119 (2015), arXiv: 1509.02670.

    Article  ADS  Google Scholar 

  16. S. C. Williams, R. D. Johnson, F. Freund, S. Choi, A. Jesche, I. Kimchi, S. Manni, A. Bombardi, P. Manuel, P. Gegenwart, and R. Coldea, Phys. Rev. B 93, 195158 (2016), arXiv: 1602.07990.

    Article  ADS  Google Scholar 

  17. I. Kimchi, and Y. Z. You, Phys. Rev. B 84, 180407 (2011), arXiv: 1108.2481.

    Article  ADS  Google Scholar 

  18. J. G. Rau, E. K. H. Lee, and H. Y. Kee, Phys. Rev. Lett. 112, 077204 (2014), arXiv: 1310.7940.

    Article  ADS  Google Scholar 

  19. K. Kitagawa, T. Takayama, Y. Matsumoto, A. Kato, R. Takano, Y. Kishimoto, S. Bette, R. Dinnebier, G. Jackeli, and H. Takagi, Nature 554, 341 (2018).

    Article  ADS  Google Scholar 

  20. P. E. Blöchl, Phys. Rev. B 50, 17953 (1994).

    Article  ADS  Google Scholar 

  21. G. Kresse, and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  22. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  23. G. Kresse, and J. Furthmüller, Comput. Mater. Sci. 6, 15 (1996).

    Article  Google Scholar 

  24. G. Kresse, and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  25. S. Bette, T. Takayama, K. Kitagawa, R. Takano, H. Takagi, and R. E. Dinnebier, Dalton Trans. 46, 15216 (2017).

    Article  Google Scholar 

  26. P. S. Wang, and H. J. Xiang, Phys. Rev. X 4, 011035 (2014), arXiv: 1401.2747.

    Google Scholar 

  27. J. H. Barrett, Phys. Rev. 86, 118 (1952).

    Article  ADS  Google Scholar 

  28. K. Hu, F. Wang, and J. Feng, Phys. Rev. Lett. 115, 167204 (2015), arXiv: 1504.02699.

    Article  ADS  Google Scholar 

  29. S. M. Winter, Y. Li, H. O. Jeschke, and R. Valentí, Phys. Rev. B 93, 214431 (2016), arXiv: 1603.02548.

    Article  ADS  Google Scholar 

  30. Y. Li, S. M. Winter, and R. Valentí, Phys. Rev. Lett. 121, 247202 (2018), arXiv: 1807.02124.

    Article  ADS  Google Scholar 

  31. R. Yadav, R. Ray, M. S. Eldeeb, S. Nishimoto, L. Hozoi, and J. van den Brink, Phys. Rev. Lett. 121, 197203 (2018), arXiv: 1811.04397.

    Article  ADS  Google Scholar 

  32. K. Geirhos, P. Lunkenheimer, M. Blankenhorn, R. Claus, Y. Matsumoto, K. Kitagawa, T. Takayama, H. Takagi, I. Kéizsméirki, and A. Loidl, arXiv: 2002.09016.

  33. S. P. Shen, J. C. Wu, J. D. Song, X. F. Sun, Y. F. Yang, Y. S. Chai, D. S. Shang, S. G. Wang, J. F. Scott, and Y. Sun, Nat. Commun. 7, 10569 (2016), arXiv: 1507.01405.

    Article  ADS  Google Scholar 

  34. M. Shimozawa, K. Hashimoto, A. Ueda, Y. Suzuki, K. Sugii, S. Yamada, Y. Imai, R. Kobayashi, K. Itoh, S. Iguchi, M. Naka, S. Ishihara, H. Mori, T. Sasaki, and M. Yamashita, Nat. Commun. 8, 1821 (2017), arXiv: 1703.00324.

    Article  ADS  Google Scholar 

  35. N. Hassan, S. Cunningham, M. Mourigal, E. I. Zhilyaeva, S. A. Torunova, R. N. Lyubovskaya, J. A. Schlueter, and N. Drichko, Science 360, 1101 (2018), arXiv: 1704.04482.

    Article  ADS  Google Scholar 

  36. J. C. Zheng, Y. Cui, T. R. Li, K. J. Ran, J. S. Wen, and W. Q. Yu, Sci. China-Phys. Mech. Astron. 61, 057021 (2018), arXiv: 1801.08277.

    Article  ADS  Google Scholar 

  37. K. Slagle, W. Choi, L. E. Chern, and Y. B. Kim, Phys. Rev. B 97, 115159 (2018), arXiv: 1710.01307.

    Article  ADS  Google Scholar 

  38. I. Kimchi, J. P. Sheckelton, T. M. McQueen, and P. A. Lee, Nat. Commun. 9, 4367 (2018), arXiv: 1803.00013.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Zhang or Fa Wang.

Additional information

This work was supported by the National Key Basic Research Program of China (Grant No. 2014CB920902), the National Key Research and Development Program of China (Grant Nos. 2017YFA0302904, and 2018YFA0305800), the National Natural Science Foundation of China (Grant No. 11804337), the Strategic Priority Research Program of Chinese Academy of Sciences (Grant No. XDB28000000), and the Beijing Municipal Science & Technology Commission (Grant No. Z181100004218001). We are grateful to inspiring discussions with XingYe Lu and WeiQiang Yu. The numerical simulations were performed on Tianhe-I Supercomputer Systerm in Tianjin and on Tianhe-II Supercomputer System in Guangzhou.

Supporting Information

The supporting information is available online at phys.scichina.com and link.springer.com. The supporting materials are published as submitted, without typesetting or editing. The responsibility for scientific accuracy and content remains entirely with the authors.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, S., Zhang, L. & Wang, F. Possible quantum paraelectric state in Kitaev spin liquid candidate H3LiIr2O6. Sci. China Phys. Mech. Astron. 63, 117411 (2020). https://doi.org/10.1007/s11433-020-1569-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11433-020-1569-9

Navigation