Skip to main content
Log in

Quantum algorithms of state estimators in classical control systems

  • Research Paper
  • Published:
Science China Information Sciences Aims and scope Submit manuscript

Abstract

In this paper, quantum algorithms are applied to the design of state estimators in classical control systems under the condition that quantum algorithms can be physically implemented. We demonstrate that the design of state estimators can be solved by quantum algorithms, which may achieve significant acceleration in comparison to traditional classical algorithms. The time complexity can be reduced from O(n6) to O(qn) when the system matrix is sparse and the condition number κ and the reciprocal of precision ϵ are small in size O(poly log(n)), where n is the dimension of state x(t) and q is the dimension of input u(t). Our research will provide an entire quantum scheme of constructing state estimators and can be regarded as an attempt to widen application scope of quantum computation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Nielsen M A, Chuang I L. Quantum Computation and Quantum Information. Cambrige: Cambridge University Press, 2000

    MATH  Google Scholar 

  2. Pfaff W, Hensen B J, Bernien H, et al. Unconditional quantum teleportation between distant solid-state quantum bits. Science, 2014, 345: 532–535

    Article  MathSciNet  Google Scholar 

  3. Shor P W. Algorithms for quantum computation: discrete logarithms and factoring. In: Proceedings of the 35th Annual Symposium on Foundations of Computer Science, 1994. 124–134

  4. Shor P W. Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM Rev, 1999, 41: 303–332

    Article  MathSciNet  Google Scholar 

  5. Grover L K. A fast quantum mechanical algorithm for database search. In: Proceedings of the 28th ACM Symposium on Theory of Computing ACM, 1996. 212–219

  6. Harrow A W, Hassidim A, Lloyd S. Quantum algorithm for linear systems of equations. Phys Rev Lett, 2009, 103: 150502

    Article  MathSciNet  Google Scholar 

  7. Benner P, Li J R, Penzl T. Numerical solution of large-scale Lyapunov equations, Riccati equations, and linear-quadratic optimal control problems. Numer Linear Algebra Appl, 2008, 15: 755–777

    Article  MathSciNet  Google Scholar 

  8. Sun H, Zhang J. Solving Lyapunov equation by quantum algorithm. Control Theor Technol, 2017, 15: 267–273

    Article  MathSciNet  Google Scholar 

  9. Sun H, Zhang J, Wu R B, et al. Optimal control protocols can be exponentially accelerated by quantum algorithms. In: Proceedings of IEEE Conference on Decision and Control, 2016. 2777–2782

  10. Shao C P. Quantum algorithms to matrix multiplication. 2018. ArXiv: 1803.01601

  11. Petkov P H, Christov N D, Konstantinov M M. Computational Methods for Linear Control Systems. Hertfordshire: Prentice-Hall, 1991

    MATH  Google Scholar 

  12. Chen C T. Linear System Theory and Design. New York: Oxford University Press, 1999

    Google Scholar 

  13. Kalman R E. Mathematical description of linear dynamical systems. SIAM J Control, 1963, 1: 152–192

    MathSciNet  MATH  Google Scholar 

  14. Franklin G F, Emami-Naeini A, Powell J D. Feedback Control of Dynamic Systems. Newark: Prentice Hall, 2002. 157–175

    MATH  Google Scholar 

  15. Krener A J, Isidori A. Linearization by output injection and nonlinear observers. Syst Control Lett, 1983, 3: 47–52

    Article  MathSciNet  Google Scholar 

  16. Luenberger D G. Observing the state of a linear system. IEEE Trans Mil Electron, 1964, 8: 74–80

    Article  Google Scholar 

  17. Darouach M, Zasadzinski M, Hayar M. Reduced-order observer design for descriptor systems with unknown inputs. IEEE Trans Automat Contr, 1996, 41: 1068–1072

    Article  MathSciNet  Google Scholar 

  18. Yue D, Han Q L, Peng C. State feedback controller design of networked control systems. IEEE Trans Circ Syst II, 2004, 51: 640–644

    Article  Google Scholar 

  19. Luis A, Peřina J. Optimum phase-shift estimation and the quantum description of the phase difference. Phys Rev A, 1996, 54: 4564–4570

    Article  Google Scholar 

  20. Berry D W, Ahokas G, Cleve R, et al. Efficient quantum algorithms for simulating sparse Hamiltonians. Commun Math Phys, 2007, 270: 359–371

    Article  MathSciNet  Google Scholar 

  21. Emily G, Mark H. Quantum Computing: Progress and Prospects. Washington, DC: The National Academy Press, 2018

    Google Scholar 

  22. Wossnig L, Zhao Z, Prakash A. Quantum linear system algorithm for dense matrices. Phys Rev Lett, 2018, 120: 050502

    Article  MathSciNet  Google Scholar 

  23. Benner P. Solving large-scale control problems. IEEE Control Syst Mag, 2004, 24: 44–59

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (Grant Nos. 61673389, 61273202).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ming Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, K., Dai, H. & Zhang, M. Quantum algorithms of state estimators in classical control systems. Sci. China Inf. Sci. 63, 192501 (2020). https://doi.org/10.1007/s11432-019-2706-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11432-019-2706-9

Keywords

Navigation