Skip to main content
Log in

Defect-mediated reactivity of Pt/TiO2 catalysts: the different role of titanium and oxygen vacancies

  • Articles
  • Published:
Science China Chemistry Aims and scope Submit manuscript

Abstract

Defects are ubiquitous in oxide supports and can often tune the catalytic property of supported metal catalysts. This work describes the distinct role of titanium and oxygen vacancies of TiO2 supports in the catalytic performance of supported Pt catalysts for CO oxidation. Pt was loaded on the TiO2 supports with oxygen vacancies (VO-TiO2) and titanium vacancies (VTi-TiO2). It was found that different defects of TiO2 could distinctively modify the electron property of Pt and thereby CO adsorption strength. The strength of CO adsorption on Pt/VTi-TiO2 is enhanced, while that of Pt/VO-TiO2 becomes weaker. Additionally, the presence of defects would also promote the reducibility of catalysts. On the account of the superior redox ability, both Pt/VTi-TiO2 and Pt/VO-TiO2 exhibit a higher activity than Pt supported on normal TiO2 for CO oxidation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ro I, Resasco J, Christopher P. ACS Catal, 2018, 8: 7368–7387

    CAS  Google Scholar 

  2. van Deelen TW, Hernández Mejía C, de Jong KP. Nat Catal, 2019, 2: 955–970

    CAS  Google Scholar 

  3. Lou Y, Liu J. Ind Eng Chem Res, 2017, 56: 6916–6925

    CAS  Google Scholar 

  4. Nie L, Mei D, Xiong H, Peng B, Ren Z, Hernandez XIP, DeLaRiva A, Wang M, Engelhard MH, Kovarik L, Datye AK, Wang Y. Science, 2017, 358: 1419–1423

    CAS  PubMed  Google Scholar 

  5. Qiao B, Wang A, Yang X, Allard LF, Jiang Z, Cui Y, Liu J, Li J, Zhang T. Nat Chem, 2011, 3: 634–641

    CAS  PubMed  Google Scholar 

  6. Wang Y, Liu S, Pei C, Fu Q, Zhao ZJ, Mu R, Gong J. Chem Sci, 2019, 10: 10531–10536

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Zheng N, Stucky GD. J Am Chem Soc, 2006, 128: 14278–14280

    CAS  PubMed  Google Scholar 

  8. Chua YPG, Gunasooriya GTKK, Saeys M, Seebauer EG. J Catal, 2014, 311: 306–313

    CAS  Google Scholar 

  9. Fu Q, Wagner T. Surf Sci Rep, 2007, 62: 431–498

    CAS  Google Scholar 

  10. Rui Z, Chen L, Chen H, Ji H. Ind Eng Chem Res, 2014, 53: 15879–15888

    CAS  Google Scholar 

  11. Tang H, Su Y, Zhang B, Lee AF, Isaacs MA, Wilson K, Li L, Ren Y, Huang J, Haruta M, Qiao B, Liu X, Jin C, Su D, Wang J, Zhang T. Sci Adv, 2017, 3: e1700231

    PubMed  PubMed Central  Google Scholar 

  12. Wang Y, Widmann D, Behm RJ. ACS Catal, 2017, 7: 2339–2345

    CAS  Google Scholar 

  13. Bliem R, van der Hoeven J, Zavodny A, Gamba O, Pavelec J, de Jongh PE, Schmid M, Diebold U, Parkinson GS. Angew Chem Int Ed, 2015, 54: 13999–14002

    CAS  Google Scholar 

  14. Li N, Chen QY, Luo LF, Huang WX, Luo MF, Hu GS, Lu JQ. Appl Catal B-Environ, 2013, 142–143: 523–532

    Google Scholar 

  15. Zhou X, Shen Q, Yuan K, Yang W, Chen Q, Geng Z, Zhang J, Shao X, Chen W, Xu G, Yang X, Wu K. J Am Chem Soc, 2018, 140: 554–557

    CAS  PubMed  Google Scholar 

  16. Carrettin S, Concepción P, Corma A, López Nieto JM, Puntes VF. Angew Chem Int Ed, 2004, 43: 2538–2540

    CAS  Google Scholar 

  17. Fang Z, Bueken B, De Vos DE, Fischer RA. Angew Chem Int Ed, 2015, 54: 7234–7254

    CAS  Google Scholar 

  18. Feng H, Xu Z, Ren L, Liu C, Zhuang J, Hu Z, Xu X, Chen J, Wang J, Hao W, Du Y, Dou SX. ACS Catal, 2018, 8: 4288–4293

    CAS  Google Scholar 

  19. Wang S, Pan L, Song JJ, Mi W, Zou JJ, Wang L, Zhang X. J Am Chem Soc, 2015, 137: 2975–2983

    CAS  Google Scholar 

  20. Zhang R, Zhang YC, Pan L, Shen GQ, Mahmood N, Ma YH, Shi Y, Jia W, Wang L, Zhang X, Xu W, Zou JJ. ACS Catal, 2018, 8: 3803–3811

    Google Scholar 

  21. Wan J, Chen W, Jia C, Zheng L, Dong J, Zheng X, Wang Y, Yan W, Chen C, Peng Q, Wang D, Li Y. Adv Mater, 2018, 30: 1705369

    Google Scholar 

  22. Matthey D, Wang JG, Wendt S, Matthiesen J, Schaub R, Laegsgaard E, Hammer B, Besenbacher F. Science, 2007, 315: 1692–1696

    CAS  PubMed  Google Scholar 

  23. Gong XQ, Selloni A, Dulub O, Jacobson P, Diebold U. J Am Chem Soc, 2008, 130: 370–381

    CAS  Google Scholar 

  24. Wang T, Liu L, Ge G, Liu M, Zhou W, Chang K, Yang F, Wang D, Ye J. J Catal, 2018, 367: 296–305

    CAS  Google Scholar 

  25. Shannon RD. Acta Cryst A, 1976, 32: 751–767

    Google Scholar 

  26. Huang H, Leung DYC. ACS Catal, 2011, 1: 348–354

    CAS  Google Scholar 

  27. Mu R, Cantu DC, Glezakou VA, Lyubinetsky I, Rousseau R, Dohnálek Z. J Phys Chem C, 2015, 119: 23552–23558

    CAS  Google Scholar 

  28. Mu R, Cantu DC, Lin X, Glezakou VA, Wang Z, Lyubinetsky I, Rousseau R, Dohnálek Z. J Phys Chem Lett, 2014, 5: 3445–3450

    CAS  PubMed  Google Scholar 

  29. Balajka J, Hines MA, DeBenedetti WJI, Komora M, Pavelec J, Schmid M, Diebold U. Science, 2018, 361: 786–789

    CAS  PubMed  Google Scholar 

  30. DeRita L, Dai S, Lopez-Zepeda K, Pham N, Graham GW, Pan X, Christopher P. J Am Chem Soc, 2017, 139: 14150–14165

    CAS  PubMed  Google Scholar 

  31. Bamwenda GR, Tsubota S, Nakamura T, Haruta M. Catal Lett, 1997, 44: 83–87

    CAS  Google Scholar 

  32. Tran SBT, Choi H, Oh S, Park JY. J Catal, 2019, 375: 124–134

    CAS  Google Scholar 

  33. Gänzler AM, Casapu M, Doronkin DE, Maurer F, Lott P, Glatzel P, Votsmeier M, Deutschmann O, Grunwaldt JD. J Phys Chem Lett, 2019, 10: 7698–7705

    PubMed  Google Scholar 

  34. Zhu H, Wu Z, Su D, Veith GM, Lu H, Zhang P, Chai SH, Dai S. J Am Chem Soc, 2015, 137: 10156–10159

    CAS  PubMed  Google Scholar 

  35. Kale MJ, Christopher P. ACS Catal, 2016, 6: 5599–5609

    CAS  Google Scholar 

  36. Song S, Wu Y, Ge S, Wang L, Wang Y, Guo Y, Zhan W, Guo Y. ACS Catal, 2019, 9: 6177–6187

    CAS  Google Scholar 

  37. Liu JX, Su Y, Filot IAW, Hensen EJM. J Am Chem Soc, 2018, 140: 4580–4587

    CAS  PubMed  PubMed Central  Google Scholar 

  38. Lou Y, Ma J, Cao X, Wang L, Dai Q, Zhao Z, Cai Y, Zhan W, Guo Y, Hu P, Lu G, Guo Y. ACS Catal, 2014, 4: 4143–4152

    CAS  Google Scholar 

  39. Panagiotopoulou P, Christodoulakis A, Kondarides DI, Boghosian S. J Catal, 2006, 240: 114–125

    CAS  Google Scholar 

  40. Panagiotopoulou P, Kondarides DI. J Catal, 2008, 260: 141–149

    CAS  Google Scholar 

  41. Zhao K, Tang H, Qiao B, Li L, Wang J. ACS Catal, 2015, 5: 3528–3539

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key Research and Development Program of China (2016YFB0600901), the National Science Foundation of China (21525626, U1862207) and the Program of Introducing Talents of Discipline to Universities (B06006).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jinlong Gong.

Ethics declarations

Conflict of interest The authors declare no conflict of interest.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, Q., Wang, Y., Zhao, ZJ. et al. Defect-mediated reactivity of Pt/TiO2 catalysts: the different role of titanium and oxygen vacancies. Sci. China Chem. 63, 1323–1330 (2020). https://doi.org/10.1007/s11426-020-9798-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11426-020-9798-2

Keywords

Navigation