Skip to main content
Log in

Adaptability and Comparative Biology of Fall Armyworm on Maize and Perennial Forage Species and Relation with Chemical-Bromatological Composition

  • Pest Management
  • Published:
Neotropical Entomology Aims and scope Submit manuscript

Abstract

This study compared the development of fall armyworm, Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae), on forage species of different genera (Arachis, Axonopus, and Cynodon) in relation to maize (preferred host) as well as its adaptability on these forage species, which are the main cultivated forages in southern Brazil. The biological performance of S. frugiperda fed on host plants studied showed the highest adaptation index (AI) in maize (26.89), followed by bermudagrass (22.02), suggesting that bermudagrass is the most suitable alternative host for the development of S. frugiperda. In contrast, the giant missionary grass (18.80) and Pinto peanut (13.81) showed lower adequacy, with a relative adaptation index (RAI) 69.93 and 51.35%, respectively, using maize as standard. The cluster analysis based on similarity of the chemical-bromatological parameters showed that maize has a richer composition than the other plant species studied. The multivariate correlation analysis between AI and chemical-bromatological composition showed a positive correlation between AI and contents of ashes, ethereal extract, potassium, phosphorus, and magnesium and, to a lesser extent, with contents of nitrogen, crude protein, and copper. In this context, complexity of host composition and balance between components could explain the biological fitness of S. frugiperda on host plant species. Pasture diversification with giant missionary grass, or especially with Pinto peanut, may be an interesting strategy for integrated pest management of fall armyworm in pasturelands in a regional context.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig 1
Fig 2
Fig 3

Similar content being viewed by others

References

  • Agrofit (2020) Phytosanitary agrochemicals system – ministry of agriculture, livestock and food supply, Brazil, 2019. http://agrofitagriculturagovbr/agrofit_cons/principal_agrofit_cons. Acessed 29 April 2020

  • Alvarenga R, Auad AM, Moraes JC, Silva SEB, Rodrigues BS, Silva GB (2017) Spittlebugs (Hemiptera: Cercopidae) and their host plants: a strategy for pasture diversification. Appl Entomol Zool 52:653–660

    Article  CAS  Google Scholar 

  • AOAC – Association of Official Analytical Chemists (1990) Official methods of analysis. Agricultural chemical, contaminants, drugs. Arlington AOAC Inc 15:768. https://law.resource.org/pub/us/cfr/ibr/002/aoac.methods.1.1990.pdf

  • Arias O, Cordeiro E, Corrêa AS, Domingues FA, Guidolin AS, Omoto C (2019) Population genetic structure and demographic history of Spodoptera frugiperda (Lepidoptera: Noctuidae): implications for insect resistance management programs. Pest Manag Sci 75:2948–2957

    Article  CAS  Google Scholar 

  • Auad AM, Sobrinho FS, Mendes SM, Toledo AMO, Lucindo TS, Benites FRG (2016) Seleção de clones de braquiária para resistência à lagarta-do-cartucho. Pesq Agropec Bras 51:579–585

    Article  Google Scholar 

  • Baldin ELL, Vendramim JD, Lourenção AL (2019) Resistência de plantas a insetos – fundamentos e aplicações. Fealq, Piracicaba 493p

    Google Scholar 

  • Boregas KGB, Mendes SM, Waquil JM, Fernandes GW (2013) Estádio de adaptação de Spodoptera frugiperda (J. E. Smith) (Lepidoptera: Noctuidae) em hospedeiros alternativos. Bragantia 72:61–70

    Article  Google Scholar 

  • Braman SK, Duncan RR (2000) Evaluation of turfgrass selections for resistance to fall armyworms (Lepidoptera: Noctuidae). HortScience 35:1268–1270

    Article  Google Scholar 

  • Busato GR, Grützmacher AD, Garcia MS, Giolo FP, Zotti MJ, Stefanello Júnior G (2005) Biologia comparada de populações de Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) em folhas de milho e arroz. Neotrop Entomol 34:743–750

    Article  Google Scholar 

  • Cecchi HM (2007) Fundamentos teóricos e práticos em análise de alimentos. Unicamp, Campinas 2:208

    Google Scholar 

  • Clark TL, Meinke LJ, Foster JE (2001) Molecular phylogeny of Diabrotica beetles (Coleoptera: Chrysomelidae) inferred from analysis of combined mithocondrial and nuclear DNA sequences. Insect Mol Biol 10:303–314

    Article  CAS  Google Scholar 

  • Cox DR (1972) Regression models and life-tables (with discussion). J R Stat Soc B 34:187–220

    Google Scholar 

  • Cox S, Peel MD, Creech JE, Waldron BL, Eun JS, Zobell DR, Miller R, Snyder DL (2017) Forage production of grass–legume binary mixtures on intermountain western USA irrigated pastures. Crop Sci 57:1742–1753

    Article  Google Scholar 

  • Detmann E, Souza MA, Filho, SCV (2012) Métodos para análise de alimentos. Visconde do Rio Branco: Universidade Federal de Viçosa

  • Figueiredo MLC, Martins-Dias AMP, Cruz I (2006) Associação entre inimigos naturais e Spodoptera frugiperda na cultura do milho. Rev Bras Milho Sorgo 5:400–408

    Google Scholar 

  • Hay-Roe MM, Meagher RL, Nagoshi RN (2011) Effects of cyanogenic plants on fitness in two host strains of the fall armyworm (Spodoptera frugiperda). J Chem Ecol 37:1314–1322

    Article  CAS  Google Scholar 

  • Henneberg W, Stohmann F (1864) Beiträge zur begründung einer rationallen Fütterung der Wiederkäuer. Praktisch-land-wirthschaftliche und chemisch-physiologische Untersuchungen, für Landwirthe und Physiologen. Ueber die Ausnutzung der Fut-terstoffe durch das volljährige Rind und über Fleischbildung im Körper desselben. Braunschweig, C. A. Schwetschke und Sohn, Berlin, Germany.

  • Hinde J, Demétrio CGB (1998) Overdispersion: Models and estimation. Comput Stat Data Anal 27:151–170

  • Islam MA, Ashilenje DS (2018) Diversified forage cropping systems and their implications on resilience and productivity. Sustainability 10:1–13

    Article  Google Scholar 

  • Jochims F, Silva AWL, Portes VM (2017) Espécies forrageiras mais utilizadas em pastagens na região Oeste de Santa Catarina. Rev Agropecu Cat 30:15–18

    Google Scholar 

  • Kasten-Júnior P, Precetti AACM, Parra JRP (1978) Dados biológicos comparativos de Spodoptera frugiperda (J.E. Smith, 1797) em duas dietas artificiais e substrato natural. Rev Agricultura 53:69–78

    Google Scholar 

  • Lynch RE, Banch WD, Gamer W (1981) Resistance of Arachis species to the fall armyworm, Spodoptera frugiperda. Peanut Sci 8:106–109

    Article  Google Scholar 

  • Meagher RL, Mislevy P, Nagoshi RN (2007) Caterpillar (Lepidoptera: Noctuidae) feeding on pasture grasses in Central Florida. Fla Entomol 90:295–303

    Article  Google Scholar 

  • Mendes SM, Boregas KGB, Lopes ME, Waquil MS, Waquil JM (2011) Respostas da lagarta-do-cartucho a milho geneticamente modificado expressando a toxina Cry1A(b). Pesq Agropec Bras 46:239–244

    Article  Google Scholar 

  • Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Sousa-Silva JC, Paula-Moraes SV, Peterson JA, Hunt TE (2018) Host plants of Spodoptera frugiperda (Lepidoptera: Noctuidae) in the Americas. Afr Entomol 26:286–300

    Article  Google Scholar 

  • Montezano DG, Specht A, Sosa-Gómez DR, Roque-Specht VF, Paula-Moraes SV, Peterson JA, Hunt TE (2019) Developmental parameters of Spodoptera frugiperda (Lepidoptera: Noctuidae) immature stages under controlled and standardized conditions. J Agric Sci 11:76–89

    Google Scholar 

  • Murúa G, Virla E (2004) Population parameters of Spodoptera frugiperda (Smith) (Lep.: Noctuidae) fed on corn and two predominant grasses in Tucuman Argentina. Acta Zool Mexicana 20:199–210

    Google Scholar 

  • Nagoshi RN, Rosas-García NM, Meagher RL, Fleischer SJ, Westbrook JK, Sappington TW, Hay-Roe M, Thomas JMG, Murúa GM (2015) Haplotype profile comparisons between Spodoptera frugiperda (Lepidoptera: Noctuidae) populations from Mexico with those from Puerto Rico, South America, and the United States and their implications to migratory behaviour. J Econ Entomol 108:135–144

    Article  CAS  Google Scholar 

  • Nagoshi RN, Goergen G, Du Pleiss H, van den Berg J, Meagher R Jr (2019) Genetic comparisons of fall armyworm populations from 11 countries spanning sub-Saharan Africa provide insights into strain composition and migratory behaviors. Sci Reports 9:8311

    Google Scholar 

  • Nelder JA, Wedderburn RWM (1972) Generalized linear models. J R Stat Soc 135:370–384

  • Pashley DP (1986) Host-associated genetic differentiation in fall armyworm (Lepidoptera, Noctuidae) - a sibling species complex. Ann Entomological Soc America 79:898–904

    Article  Google Scholar 

  • Pashley DP, Hardy TNN, Hammond AM (1995) Host effects on developmental and reproductive traits in fall armyworm strains (Lepidoptera: Noctuidae). Ann. Entomol. Soc. Am. 88: 748–755

  • Pereira MFA, Benedetti RAL, Almeida JEM (2008) Eficiência de Metarhizium anisopliae (Metsch.) Sorokin no controle de Deois flavopicta (Stal., 1854), em pastagem de capim-braquiária (Brachiaria decumbens). Arq Inst Biológico 75:465–469

    Google Scholar 

  • R Core Team (2017) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/. Acessed 15 December 2018

  • Ribeiro LP, Castilhos RV (2018) Manejo integrado de pragas em pastagens: ênfase em pragas-chave das gramíneas perenes de verão. Florianópolis: Epagri, 56p. (Boletim Técnico 185)

  • Ribeiro LP, Ansante TF, Vendramim JD (2016) Efeito do extrato etanólico de sementes de Annona mucosa no desenvolvimento e comportamento alimentar de Spodoptera frugiperda. Bragantia 75:322–330

    Article  Google Scholar 

  • Sarruge JR, Haag HP (1974) Análise química das plantas. ESALQ, Piracicaba

    Google Scholar 

  • Silva FC (2009) Manual de análises químicas de solos, plantas e fertilizantes. Embrapa, Brasília

    Google Scholar 

  • Silva-Brandão KL, Horikoshi RJ, Bernardi D, Omoto C, Figueira A, Brandão MM (2017) Transcript expression plasticity as a response to alternative larval host plants in the speciation process of corn and rice strains of Spodoptera frugiperda. BMC Genomics 18:792

    Article  Google Scholar 

  • Silva-Brandão KL, Peruchi A, Seraphim N, Murad NF, Carvalho RA, Farias JR, Omoto C, Cônsoli FC, Figueira A, Brandão MM (2018) Loci under selection and markers associated with host plant and host-related strains shape the genetic structure of Brazilian populations of Spodoptera frugiperda (Lepidoptera, Noctuidae). PLoS One 2018:e0197378

    Article  Google Scholar 

  • Síntese Anual da Agricultura de Santa Catarina (2018-2019). Epagri/Cepa, Florianópolis.http://docwebepagriscgovbr/website_cepa/publicacoes/Sintese_2018_19pdf. Acessed 29 April 2020

  • Smith C (2005) Plant resistance to arthropods: molecular and conventional approaches. Springer, New York

    Book  Google Scholar 

  • Smith CM, Clement SL (2012) Molecular bases of plant resistance to arthropods. Annu Rev Entomol 57:309–328

    Article  CAS  Google Scholar 

  • Tedesco MJ, Gianello C, Bissani CA, Bohnen H, Volkweiss SJ (1995) Análise de solo, plantas e outros materiais. Universidade Federal do Rio Grande do Sul, Porto Alegre

    Google Scholar 

  • Tozer KN, Barker GM, Cameron CA, Wilson D, Loick N (2016) Effects of including forage herbs in grass-legume mixtures on persistence of intensively managed pastures sampled across three age categories and five regions New Zealand. J Agric Res 59

  • Vendramin JD, Guzzo EC (2012) Resistência de plantas e a bioecologia e nutrição dos insetos. In: Panizzi AR, Parra JRP (ed.) Bioecologia e nutrição de insetos: base para o manejo integrado de pragas. Brasília, DF: Embrapa Informação Tecnólogica; Londrina: Embrapa Soja, 2009. p.1055–1105

  • Wiseman BR, Duncan RR (1996) Resistance of Paspalum sp. to Spodoptera frugiperda (J.E. Smith) (Lepidoptera: Noctuidae) larvae. J Turfgrass Mgt 1:23–36

    Article  Google Scholar 

  • Yan W, Falk DE (2002) Biplot analysis of host by pathogen interaction. Plant Dis 86:1396–1401

Download references

Acknowledgments

This study was possible due to the technical support offered by Carmen Cella dos Santos, Leandro Zanchetta, Marcelo Rigo, Neusa Teresinha Maciel, and Zelinda Meneguzzi (all from Cepaf/Epagri). We wish to thank Prof. Dr. Alberto Soares Côrrea (Laboratório de Ecologia Molecular de Artrópodes, USP/ESALQ) for important support in molecular analysis and insect strain identification.

Funding

This study received financial support from the Brazilian National Counsel of Technological and Scientific Development (CNPq, Process number 445518/2014-6).

Author information

Authors and Affiliations

Authors

Contributions

LPR conceived the study. LPR, ALSK, FRGL, MRLT and AFR carried out the bioassays and bromatological analysis. LPR and CNN analyzed the obtained data. LPR, FRGL and MRLT wrote the manuscript. All authors revised and approved the manuscript.

Corresponding author

Correspondence to L. P. Ribeiro.

Additional information

Edited by Silvana P Moraes – Univ of Florida

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ribeiro, L.P., Klock, A.L.S., Nesi, C.N. et al. Adaptability and Comparative Biology of Fall Armyworm on Maize and Perennial Forage Species and Relation with Chemical-Bromatological Composition. Neotrop Entomol 49, 758–767 (2020). https://doi.org/10.1007/s13744-020-00794-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13744-020-00794-7

Keywords

Navigation