Skip to main content
Log in

Double-layer TiO2 inverse opal-based quantum dot-sensitized solar cells

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The operation of dye-sensitized solar cells and quantum dot-sensitized solar cells (QDSSCs) depends strongly on the photoanode material employed. This is addressed in the present work by developing photoanodes based on a double-layer TiO2 inverse opal material with different interconnected pore sizes in the bottom and upper layers for use in QDSSCs. The proposed photoanode material leads to better infiltration of the sensitizers and the hole transporting material through the entire depth of the TiO2 layer. Double-layer TiO2 inverse opal-based QDSSCs are demonstrated to facilitate the greater absorbance of quantum dots and obtain higher photocurrent and power conversion efficiency than QDSSCs adopting single-layer TiO2 inverse opal photoanodes. Various QDSSCs employing double-layer TiO2 inverse opal photoanodes with different pore sizes in the layers are tested. The CdS/CdSe co-sensitized solar cell adopting the optimum photoanode configuration and thickness provided the highest QDSSC conversion efficiency of 5.79%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Regan BO, Grätzel M (1991) A low-cost, high-efficiency solar cell based on dye sensitized colloidal TiO2 films. Nature 353(6346):737–740

    Article  Google Scholar 

  2. Wang NX, Sun CH, Zhao Y, Zhou SY, Chen P, Jiang L (2008) Fabrication of three-dimensional ZnO/ TiO2 heteroarchitectures via a solution process. J Mater Chem 18(33):3909–3911

    Article  CAS  Google Scholar 

  3. Alwani MAMA, Hasan HA, Shorgani NKNA, Mashaan ABSAA (2020) Natural dye extracted from Areca catechu fruits as a new sensitiser for dye-sensitised solar cell fabrication: optimisation using D-Optimal design. Mater Chem Phys 240:122204

    Article  Google Scholar 

  4. Song X, Liu Z, Tian T, Ma Z, Yan Y, Li X, Dong X, Wang Y, Xia C (2019) Lead sulfide films synthesized by microwave-assisted chemical bath deposition method as efficient counter electrodes for CdS/CdSe sensitized ZnO nanorod solar cells. Sol Energy 177:672–678

    Article  CAS  Google Scholar 

  5. Oekermann T, Zhang D, Yoshida T, Minoura H (2004) Electron transport and back reaction in nanocrystalline TiO2 films prepared by hydrothermal crystallization. J Phys Chem B 108(7):2227–2235

    Article  CAS  Google Scholar 

  6. Song X, Wang M, Xing T, Deng J, Ding J, Yang Z, Zhang X (2014) Fabrication of micro/nano-composite porous TiO2 electrodes for quantum dot-sensitized solar cells. J Power Sources 253:17–26

    Article  CAS  Google Scholar 

  7. Huang J, Jing H, Li N, Li L, Jiao W (2019) Fabrication of magnetically recyclable SnO2-TiO2/CoFe2O4 hollow core-shell photocatalyst: Improving photocatalytic efficiency under visible light irradiation. J Solid State Chem 271:103–109

    Article  CAS  Google Scholar 

  8. Lei B, Zheng X, Qiao H, Li Y, Wang S, Huang G, Sun Z (2014) A novel hierarchical homogeneous nanoarchitecture of TiO2 nanosheets branched TiO2 nanosheet arrays for high efficiency dye-sensitized solar cells. Electrochim Acta 149:264–270

    Article  CAS  Google Scholar 

  9. Xu C, Song Y, Lu L, Cheng C, Liu D, Fang X, Chen X, Zhu X, Li D (2013) Electrochemically hydrogenated TiO2 nanotubes with improved photoelectrochemical water splitting performance. Nanoscale Res Lett 8(1):391

    Article  PubMed  PubMed Central  Google Scholar 

  10. Wang W, Li F, Zhang D, Leung DYC, Li G (2016) Photoelectrocatalytic hydrogen generation and simultaneous degradation of organic pollutant via CdSe/ TiO2 nanotube arrays. Appl Surf Sci 362:490–497

    Article  CAS  Google Scholar 

  11. Zhang J, Li Q, Li S, Wang Y, Ye C, Ruterana P, Wang H (2014) An efficient photoanode consisting of TiO2 nanoparticle-filled TiO2 nanotube arrays for dye sensitized solar cells. J Power Sources 268:941–949

    Article  CAS  Google Scholar 

  12. Kondo Y, Yoshikawa H, Awaga K, Murayama M, Mori T, Sunada K, Bandow S, Iijima S (2008) Preparation, photocatalytic activities, and dye-sensitized solar-cell performance of submicron-scale TiO2 hollow spheres. Langmuir 24(2):547–550

    Article  CAS  PubMed  Google Scholar 

  13. Zhao F, Ma R, Jiang Y (2018) Strong efficiency improvement in dye-sensitized solar cells by novel multi-dimensional TiO2 photoelectrode. Appl Surf Sci 434:11–15

    Article  CAS  Google Scholar 

  14. Li ZQ, Que YP, Mo LE, Li Z, Que Y, Mo LE, Chen W, Ding Y, Ma Y, Hu L, Dai S (2015) One-pot synthesis of mesoporous TiO2 microspheres and its application for high-efficiency dye-sensitized solar cells. ACS Appl Mater Interfaces 7(20):10928–10934

    Article  CAS  PubMed  Google Scholar 

  15. Yang W, Chen X, Liu L, Yang Q, Yang P (2016) Light-scattering photoanodes from double-layered mesoporous TiO2 nanoparticles/SiO2 nanospheres for dye-sensitized solar cells. Electrochim Acta 213:1–7

    Article  CAS  Google Scholar 

  16. Vu HT, Atabaev TS, Cong DP, Hossain MA, Lee D, Dinh NN, Cho CR, Kim HK, Hwang YH (2016) TiO2 nanofiber/nanoparticles composite photoelectrodes with improved light harvesting ability for dye-sensitized solar cells. Electrochim Acta 193:166–171

    Article  CAS  Google Scholar 

  17. Khan J, Gu J, He S, Li X, Ahmed G, Liu Z, Akhtar MN, Mai W, Wu M (2018) Rational design of a tripartite-layered TiO2 photoelectrode: a candidate for enhanced power conversion efficiency in dye sensitized solar cells. Nanoscale 9:9913–9920

    Article  Google Scholar 

  18. Pérez JAB, Courel M, Pal M, Delgado FP, Mathews NR (2017) Effect of ytterbium doping concentration on structural, optical and photocatalytic properties of TiO2 thin films. Ceram Int 43(17):15777–15784

    Article  Google Scholar 

  19. Pérez JAB, Courel M, Valderrama RC, Hernández I, Pal M, Delgado FP, Mathews NR (2019) Structural, optical, and photoluminescence properties of erbium doped TiO2 films. Vacuum 169:108873

    Article  Google Scholar 

  20. Diguna LJ, Shen Q, Kobayashi J, Toyoda T (2007) Effect of ZnS coating on the photovoltaic properties of CdSe quantum dot-sensitized solar cells. Appl Phys Lett 91(2):023116

    Article  Google Scholar 

  21. Somani PR, Dionigi C, Murgia M, Palles D, Nozar P, Ruani G (2005) Solid-state dye PV cells using inverse opal TiO2 films. Sol Energy Mater Sol Cells 87(1-4):513–519

    Article  CAS  Google Scholar 

  22. Xiong Y, Deng F, Wang L, Liu Y (2014) TiO2 inverse opal based CdS/CdSe quantum dot co-sensitized solar cells. J Mater Sci Mater Electron 25:3039–3043

    Article  CAS  Google Scholar 

  23. Hironaka M, Toyoda T, Hori K, Ogomi Y, Hayase S, Shen Q (2017) Photovoltaic properties of CdSe quantum dot sensitized inverse opal TiO2 solar cells: the effect of TiCl4 post treatment. J Mod Phys 8(04):522–530

    Article  CAS  Google Scholar 

  24. Toyoda T, Shen Q (2012) Quantum-sot-sensitized solar cells: effect of nanostructured TiO2 morphologies on photovoltaic properties. J Phys Chem Lett 3(14):1885–1893

    Article  CAS  PubMed  Google Scholar 

  25. Diguna LJ, Murakami M, Sato A, Kumagai Y, Ishihara T, Kobayashi N, Shen Q, Toyoda T (2006) Photoacoustic and photoelectrochemical characterization of inverse opal TiO2 sensitized with CdSe quantum dots. Jpn J Appl Phys 45(6B):5563–5568

    Article  CAS  Google Scholar 

  26. Yu J, Lei J, Wang L, Zhang J, Liu Y (2018) Synthesis, modification, and applications - a review. J Alloys Compd 769:740–757

    Article  CAS  Google Scholar 

  27. Zhang C, Liu S, Liu X, Deng F, Xiong Y, Tsai FC (2018) Incorporation of Mn2+ into CdSe quantum dots by chemical bath co-deposition method for photovoltaic enhancement of quantum dot-sensitized solar cells. R Soc Open Sci 5(3):171712

    Article  PubMed  PubMed Central  Google Scholar 

  28. Lee YL, Lo YS (2009) Highly efficient quantum-dot-sensitized solar cell based on co-sensitization of CdS/CdSe. Adv Funct Mater 6:340–345

    Google Scholar 

  29. Pan Z, Zhang H, Cheng K, Hou Y, Hua J, Zhong X (2012) Highly efficient inverted type-I CdS/CdSe core/shell structure QD-sensitized solar cells. ACS Nano 6(5):3982–3988

    Article  CAS  PubMed  Google Scholar 

  30. Dai G, Zhao L, Wang S, Hu J, Dong B, Lu H, Li J (2012) Double-layer composite film based on sponge-like TiO2 and P25 as photoelectrode for enhanced efficiency in dye-sensitized solar cells. J Alloys Compd 539:264–270

    Article  CAS  Google Scholar 

  31. Xie Y, Li Z, Xu Z, Zhang H (2011) Preparation of coaxial TiO2/ZnO nanotube arrays for high-efficiency photo-energy conversion applications. Electrochem Commun 13(8):788–791

    Article  CAS  Google Scholar 

  32. Hauch A, Georg A (2001) Diffusion in the electrolyte and charge-transfer reaction at the platinum electrode in dye-sensitized solar cells. Electrochim Acta 46(22):3457–3466

    Article  CAS  Google Scholar 

  33. Li L, Chang C, Wu H, Shiu J, Wu P, Diau E (2012) Morphological control of platinum nanostructures for highly efficient dye-sensitized solar cells. J Mater Chem 22(13):6267–6273

    Article  CAS  Google Scholar 

  34. Hossain MA, Jennings JR, Mathews N, Wang Q (2012) Band engineered ternary solid solution CdSxSe1-x sensitized mesoscopic TiO2 solar cells. Phys Chem Chem Phys 14(19):7154–7161

    Article  CAS  PubMed  Google Scholar 

  35. Zhou R, Wan L, Niu H, Yang L, Mao X, Zhang Q, Miao S, Xu J, Cao G (2016) Tailoring band structure of ternary CdSxSe1-x quantum dots for highly efficient sensitized solar cells. Sol Energy Mater Sol Cells 155:20–29

    Article  CAS  Google Scholar 

Download references

Funding

This work was supported by the Grants No. 11804032 from the National Natural Science Foundation of China and No. 201801023A from the Intellectual Property Office of Hubei Province of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Xiong.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jin, J., Zhao, L., Liu, Y. et al. Double-layer TiO2 inverse opal-based quantum dot-sensitized solar cells. J Solid State Electrochem 25, 291–299 (2021). https://doi.org/10.1007/s10008-020-04806-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-020-04806-9

Keywords

Navigation