Skip to main content
Log in

A Positivity Preserving Iterative Method for Finding the Ground States of Saturable Nonlinear Schrödinger Equations

  • Published:
Journal of Scientific Computing Aims and scope Submit manuscript

Abstract

In this paper, we propose an iterative method to compute the positive ground states of saturable nonlinear Schrödinger equations. A discretization of the saturable nonlinear Schrödinger equation leads to a nonlinear algebraic eigenvalue problem (NAEP). For any initial positive vector, we prove that this method converges globally with a locally quadratic convergence rate to a positive solution of NAEP. During the iteration process, the method requires the selection of a positive parameter \(\theta _k\) in the kth iteration, and generates a positive vector sequence approximating the eigenvector of NAEP and a scalar sequence approximating the corresponding eigenvalue. We also present a halving procedure to determine the parameters \(\theta _k\), starting with \(\theta _k=1\) for each iteration, such that the scalar sequence is strictly monotonic increasing. This method can thus be used to illustrate the existence of positive ground states of saturable nonlinear Schrödinger equations. Numerical experiments are provided to support the theoretical results.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Bao, W., Jacksch, D.: An explicit unconditionaly stable numerical method for solving damped nonlinear Schrödinger equation with focusing nonlinearity. SIAM J. Numer. Anal. 41, 1406–1426 (2003)

    Article  MathSciNet  Google Scholar 

  2. Bao, W., Tang, W.: Ground state solution of Bose-Einstein condensate by directly minimizing the energy functional. J. Comput. Phys. 187, 230–254 (2003)

    Article  MathSciNet  Google Scholar 

  3. Bao, W., Du, Q.: Computing the ground state solution of Bose-Einstein condensates by a normalized gradient flow. SIAM J. Sci. Comput. 25, 1674–1697 (2004)

    Article  MathSciNet  Google Scholar 

  4. Berman, A., Plemmons, R.J.: Nonnegative Matrices in the Mathematical Sciences. Classics in Applied Mathematics, vol. 9. SIAM, Philadelphia, PA (1994)

    Book  Google Scholar 

  5. Cazenave, T., Lions, P.L.: Orbital stability of standing waves for some nonlinear Schrödinger equations. Commun. Math. Phys. 85, 549–561 (1982)

    Article  Google Scholar 

  6. Cuevas, J., Eilbeck, J.C.: Discrete soliton collisions in a waveguide array with saturable nonlinearity. Phys. Lett. A 358, 15–20 (2006)

    Article  Google Scholar 

  7. Coleman, T.F., Li, Y.: An interior trust region approach for nonlinear minimization subject to bounds. SIAM J. Optim. 6, 418–445 (1996)

    Article  MathSciNet  Google Scholar 

  8. Coleman, T.F., Li, Y.: On the convergence of interior-reflective Newton methods for nonlinear minimization subject to bounds. Math. Program. 67(2), 189–224 (1994)

    Article  MathSciNet  Google Scholar 

  9. Cuevas, J., Eilbeck, J.C., Karachalios, N.I.: Thresholds for breather solutions of the discrete nonlinear Schrödinger equation with saturable and power nonlinearity. Discrete Contin. Dyn. Syst. 21, 445–475 (2008)

    Article  MathSciNet  Google Scholar 

  10. Gatz, S., Herrmann, J.: Propagation of optical beams and the properties of two dimensional spatial solitons in media with a local saturable nonlinear refractive index. J. Opt. Soc. Am. B 14, 1795–1806 (1997)

    Article  Google Scholar 

  11. Horn, R.A., Johnson, C.R.: Matrix Analysis. The Cambridge University Press, Cambridge (1985)

    Book  Google Scholar 

  12. Karlsson, M.: Optical beams in saturable self-focusing media. Phys. Rev. A 46, 2726–2734 (1992)

    Article  Google Scholar 

  13. Karachalios, N., Yannacopoulos, A.: Global existence and compact attractors for the discrete Schrödinger equations. J. Differ. Equ. 217, 88–123 (2005)

    Article  Google Scholar 

  14. Kelley, P.L.: Self-focusing of optical beams. Phys. Rev. Lett. 15, 1005–1008 (1965)

    Article  Google Scholar 

  15. Lin, T.-C., Wang, X., Wang, Z.-Q.: Orbital stability and energy estimate of ground states of saturable nonlinear Schrödinger equations with intensity functions in \( {\mathbb{R}}^2\). J. Differ. Equ. 263, 4750–4786 (2017)

    Article  Google Scholar 

  16. Liu, C.-S., Guo, C.-H., Lin, W.-W.: A positivity preserving inverse iteration for finding the Perron pair of an irreducible nonnegative third order tensor. SIAM J. Matrix Anal. Appl. 37, 911–932 (2016)

    Article  MathSciNet  Google Scholar 

  17. Liu, C.-S., Guo, C.-H., Lin, W.-W.: Newton-Noda iteration for finding the Perron pair of a weakly irreducible nonnegative tensor. Numer. Math. 137, 63–90 (2017)

    Article  MathSciNet  Google Scholar 

  18. Maia, L.A., Montefusco, E., Pellacci, B.: Weakly coupled nonlinear Schrödinger systems: the saturation effect. Calc. Var. 46, 325–351 (2013)

    Article  MathSciNet  Google Scholar 

  19. Marburger, J.H., Dawesg, E.: Dynamical formation of a small-scale filament. Phys. Rev. Lett. 21, 556–558 (1968)

    Article  Google Scholar 

  20. Merhasin, I.M., Malomed, B.A., Senthilnathan, K., Nakkeeran, K., Wai, P.K.A., Chow, K.W.: Solitons in Bragg gratings with saturable nonlinearities. J. Opt. Soc. Am. B 24, 1458–1468 (2007)

    Article  MathSciNet  Google Scholar 

  21. Noda, T.: Note on the computation of the maximal eigenvalue of a non-negative irreducible matrix. Numer. Math. 17, 382–386 (1971)

    Article  MathSciNet  Google Scholar 

  22. Powell, M.J.D.: A fortran subroutine for solving systems of nonlinear algebraic equations. In: Rabinowitz, P. (ed.) Numerical Methods for Nonlinear Algebraic Equations, Ch. 7 (1970)

  23. Rabinowitz, P.H.: On a class of nonlinear Schrödinger equations. Z. Angew. Math. Phys. 43(2), 270–291 (1992)

    Article  MathSciNet  Google Scholar 

  24. Wu, X., Wen, Z., Bao, W.: A regularized Newton method for computing ground states of Bose-Einstein condensates. J. Sci. Comput. 73, 303–329 (2017)

    Article  MathSciNet  Google Scholar 

  25. Yan, Y.: Attractors and dimensions for discretizations of a weakly damped Schrödinger equations and a sine-Gordon equation. Nonlinear Anal. 20, 1417–1452 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I would like to thank Prof. Chun-Hua Guo, Wen-Wei Lin and Tai-Chia Lin for their valuable discussion and the two anonymous referees for their valuable comments. This work is supported by Ministry of Science and Technology in Taiwan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ching-Sung Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, CS. A Positivity Preserving Iterative Method for Finding the Ground States of Saturable Nonlinear Schrödinger Equations. J Sci Comput 84, 41 (2020). https://doi.org/10.1007/s10915-020-01297-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10915-020-01297-8

Keywords

Mathematics Subject Classification

Navigation