Skip to main content
Log in

Probing the interaction between human serum albumin and the sodium dodecyl sulphate with fluorescence correlation spectroscopy

  • Regular Article
  • Published:
Journal of Chemical Sciences Aims and scope Submit manuscript

Abstract

The denaturation of human serum albumin (HSA) upon interaction with the surfactant sodium dodecyl sulphate (SDS) was examined by measuring the diffusion time of fluorophore (RITC) tagged HSA under near single-molecule conditions using fluorescence correlation spectroscopy. The diffusion time shows four distinct regions as a function of SDS concentration, which corresponds to (I) opening of the tertiary structure, (II) non-specific SDS aggregation, (III) opening of the secondary structure, and (IV) aggregation of SDS around the secondary structure. Diffusion time increases from 383 µs for the free protein to 1002 µs for the SDS bound protein, which leads to an effective increase in the hydrodynamic radius by a factor of about 2.6.

Graphic abstract

Fluorescence correlation spectroscopy reveals a four-step interaction regime between SDS and HSA. The initial opening of the tertiary structure, followed by non-specific aggregation and opening up the secondary structure and finally leading to formation of protein bound micelles with an effective increase of hydrodynamic radius by a factor of 2.6.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3

Similar content being viewed by others

References

  1. Otzen D 2011 Protein–surfactant interactions: a tale of many states Biochim. Biophys. Act. (BBA) 1814 562

    CAS  Google Scholar 

  2. Cooper A and Kennedy M W 2010 Biofoams and natural protein surfactants Biophys. Chem. 151 96

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Vasilescu M and Angelescu D 1999 Interactions of globular proteins with surfactants studied with fluorescence probe methods Langmuir 15 2635

    CAS  Google Scholar 

  4. Gelamo E L and Tabak M 2000 Spectroscopic studies on the interaction of bovine (BSA) and human (HSA) serum albumins with ionic surfactants Spectrochim. Acta Part A 56 2255

    Google Scholar 

  5. Vlasova I M and Saletsky A M 2011 Polarized fluorescence in the study of rotational diffusion of human albumin during denaturation under the action of SDS Moscow Univ. Phys. Bull. 1 58

    Google Scholar 

  6. Vlasova I M and Saletsky A M 2009 Fluorescence of tryptophan in the denaturation of human serum albumin under the action of sodium dodecyl sulfate Russ. J. Phys. Chem. B 3 976

    Google Scholar 

  7. Anand U, Jash C and Mukherjee S 2010 Spectroscopic probing of the microenvironment in a protein-surfactant assembly J. Phys. Chem. B 114 15839

    CAS  PubMed  Google Scholar 

  8. Hazra P, Chakrabarty D, Chakraborty A and Sarkar N 2004 Probing protein–surfactant interaction by steady state and time-resolved fluorescence spectroscopy Biochem. Biophys. Res. Commun. 314 543

    CAS  Google Scholar 

  9. Turro N J, Lei X G, Ananthapadmanabhan K P and Aronson M 1995 Spectroscopic probe analysis of protein-surfactant interactions: the BSA/SDS system Langmuir 11 2525

    CAS  Google Scholar 

  10. Shweitzer B, Zanette D and Itri R 2004 Bovine serum albumin (BSA) plays a role in the size of SDS micelle-like aggregates at the saturation binding: the ionic strength effect J. Coll. Inter. Sci. 277 285

    CAS  Google Scholar 

  11. Santos S F, Zanette D, Fischer H and Itri R 2003 A systematic study of bovine serum albumin (BSA) and sodium dodecyl sulfate (SDS) interactions by surface tension and small angle X-ray scattering J. Colloid Interface Sci. 262 400

    CAS  PubMed  Google Scholar 

  12. Moriyama Y, Ohta D, Hachiya K, Mitsui Y and Takeda K 1996 Fluorescence behavior of tryptophan residues of bovine and human serum albumins in ionic surfactant solutions: a comparative study of the two and one tryptophan(s) of bovine and human albumins J. Prot. Chem. 15 265

    CAS  Google Scholar 

  13. Moriyama Y and Takeda K 1999 Re-formation of the helical structure of human serum albumin by the addition of small amounts of sodium dodecyl sulfate after the disruption of the structure by urea. A comparison with bovine serum albumin Langmuir 15 2003

    CAS  Google Scholar 

  14. Moriyama Y, Kanasaka and Takeda K 2003 Protective effect of small amounts of sodium dodecyl sulfate on the helical structure of bovine serum albumin in thermal denaturation J. Colloid Interface Sci. 257 41

    CAS  PubMed  Google Scholar 

  15. Chatterjee S and Mukherjee T K 2016 Insights into the morphology of human serum albumin and sodium dodecyl sulfate complex: a spectroscopic and microscopic approach J. Colloid Interface Sci. 478 29

    CAS  PubMed  Google Scholar 

  16. Mukherjee T K, Lahiri P and Datta A 2007 2-(2′-Pyridyl)benzimidazole as a fluorescent probe for monitoring protein–surfactant interaction Chem. Phys. Lett. 438 218

    CAS  Google Scholar 

  17. Reynolds J A and Tanford 1970 Binding of dodecyl sulfate to proteins at high binding ratios. Possible implications for the state of proteins in biological membranes Proc. Natl. Acad. Sci. U.S.A. 66 1002

  18. Allen G 1974 The binding of sodium dodecyl sulphate to bovine serum albumin at high binding ratios Biochemistry J. 137 575

    CAS  Google Scholar 

  19. Laurie O and Oakes J 1975 Protein-surfactant interactions. Spin label study of interactions between bovine serum albumin (BSA) and sodium dodecyl sulphate (SDS) J. Chem. Soc. Faraday Trans. 1 71 1324

  20. Oakes J 1974 Protein-surfactant interactions. Nuclear magnetic resonance and binding isotherm studies of interactions between bovine serum albumin and sodium dodecyl sulphate J. Chem. Soc. Faraday Trans. 1 70 2200

  21. Shinagawa S, Sato M, Kameyama K and Takagi T 1994 Effect of salt concentration on the structure of protein-sodium dodecyl sulfate complexes revealed by small-angle X-ray scattering Langmuir 10 1690

    CAS  Google Scholar 

  22. Santra M K, Banerjee A, Rahaman O and Panda 2005 Unfolding pathways of human serum albumin: evidence for sequential unfolding and folding of its three domains Int. J. Biol. Macromol. 37 200

  23. He X M and Carter D C 1992 Atomic structure and chemistry of human serum albumin Nature 358 209

    CAS  PubMed  Google Scholar 

  24. Dugaiczyk A, Law S W and Dennison O E 1982 Nucleotide sequence and the encoded amino acids of human serum albumin mRNA Proc. Natl. Acad. Sci. U.S.A. 79 71

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Green A M and Abelt C J 2015 Dual-sensor fluorescent probes of surfactant-induced unfolding of human serum albumin J. Phys. Chem. B 119 3912

    CAS  PubMed  PubMed Central  Google Scholar 

  26. Yadav R, Sengupta B and Sen P 2014 Conformational fluctuation dynamics of domain I of human serum albumin in the course of chemically and thermally induced unfolding using fluorescence correlation spectroscopy J. Phys. Chem. B 118 5428

    CAS  PubMed  Google Scholar 

  27. Magde D, Elson E and Webb W W 1972 Thermodynamic fluctuations in a reacting system-measurement by fluorescence correlation spectroscopy Phys. Rev. Lett. 29 705

    CAS  Google Scholar 

  28. Elson E L and Magde D 1974 Fluorescence correlation spectroscopy. I. Conceptual basis and theory Biopolymers 13 1

    CAS  Google Scholar 

  29. Widengren J, Dapprich J and Rigler R 1997 Fast interactions between Rh6G and dGTP in water studied by fluorescence correlation spectroscopy Chem. Phys. 216 417

    CAS  Google Scholar 

  30. Haustein E and Schwille P 2007 Fluorescence correlation spectroscopy: novel variations of an established technique Annu. Rev. Biophys. Biomol. Struct. 36 151

    CAS  Google Scholar 

  31. Wöll D 2014 Fluorescence correlation spectroscopy in polymer science RSC Adv. 4 2447

    Google Scholar 

  32. Rathgeber S, Beauvisage H J, Chevreau H, Willenbacher N and Oelschlaeger C 2009 Microrheology with fluorescence correlation spectroscopy Langmuir 25 6368

    CAS  PubMed  Google Scholar 

  33. Kim S 2003 Intracellular applications of fluorescence correlation spectroscopy: prospects for neuroscience Curr. Opin. Neurobiol. 13 583

    CAS  Google Scholar 

  34. Wachsmuth M, Waldeck W and Langowski J 2000 Counting nucleosomes in living cells with a combination of fluorescence correlation spectroscopy and confocal imaging J. Mol. Biol. 298 677

    CAS  PubMed  Google Scholar 

  35. Sengupta P, Balaji J and Maiti S 2002 Measuring diffusion in cell membranes by fluorescence correlation spectroscopy Methods 27 374

    CAS  PubMed  Google Scholar 

  36. Sengupta P, Garai K, Balaji J, Periyasami N and Maiti S 2003 Measuring size distribution in highly heterogeneous systems with fluorescence correlation spectroscopy Biophys. J. 84 1977

  37. Al-soufi W, Novo M, Felekyan S and Seidel C A M 2005 Fluorescence correlation spectroscopy, a tool to investigate supramolecular dynamics: inclusion complexes of pyronines with cyclodextrin J. Am. Chem. Soc. 109 8775

    Google Scholar 

  38. Al-Soufi W, Reija B, Felekyan S, Seidel C M and Novo M 2008 Dynamics of supramolecular association monitored by fluorescence correlation spectroscopy Chem. Phys. Chem. 9 1819

    CAS  Google Scholar 

  39. Sherman E, Itkin A, Kuttner Y Y, Rhoades E, Amir D, Haas E and Haran G 2008 Using fluorescence correlation spectroscopy to study conformational changes in denatured proteins Biophys. J. 94 4819

  40. Sen Mojumdar S, Chowdhury R, Chattoraj S and Bhattacharyya K 2012 J. Phys. Chem. B 116 12189

    CAS  PubMed  Google Scholar 

  41. Sasmal D K, Mondal T, Sen Mojumdar S, Choudhury A, Banerjee R and Bhattacharyya K 2011 An FCS study of unfolding and refolding of CPM-labeled human serum albumin: role of ionic liquid J. Phys. Chem. B 115 13075

    CAS  PubMed  Google Scholar 

  42. Ghosh S, Adhikari A, Sen Mojumdar S and Bhattacharyya K 2010 A fluorescence correlation spectroscopy study of the diffusion of an organic dye in the gel phase and fluid phase of a single lipid vesicle J. Phys. Chem. B 114 5736

    CAS  PubMed  Google Scholar 

  43. Rigler R and Elson E S 2000 Fluorescence Correlation Spectroscopy: Theory and Applications Springer Series in Chemical Physics vol. 65 (Berlin: Springer Verlag)

    Google Scholar 

  44. Magde D, Elson E L and Webb W W 1974 Fluorescence correlation spectroscopy. I. Conceptual basis and theory. Fluorescence correlation spectroscopy conceptual basis and theory. II Biopolymers 13 29

  45. Jachimska B, Wasilewska M and Adamczyk Z 2008 Characterization of globular protein solutions by dynamic light scattering, electrophoretic mobility, and viscosity measurements Langmuir 24 6866

    CAS  PubMed  Google Scholar 

  46. Leggio C, Galantini L, Konarev P V and Pavel N V 2009 Urea-induced denaturation process on defatted human serum albumin and in the presence of palmitic acid J. Phys. Chem. B 113 12590

    CAS  PubMed  Google Scholar 

  47. Anand U, Ray S, Ghosh S, Banerjee R and Mukherjee S 2015 Structural aspects of a protein–surfactant assembly: native and reduced states of human serum albumin Protein J. 34 147

    CAS  PubMed  Google Scholar 

  48. Zhang X, Poniewierski A, Hou S, Sozanski K, Wisniewska A, Wieczorek S A, Kalwarczyk T, Sun L and Hołyst R 2015 Tracking structural transitions of bovine serum albumin in surfactant solutions by fluorescence correlation spectroscopy and fluorescence lifetime analysis Soft Matter 11 2512

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors wish to thank Prof. Sudipta Maiti for his help in setting up the FCS instrument as part of the first FCS workshop held at TIFR in the year 2009. The FCS instrument was procured as part of the Department of Information Technology Govt. of India sponsored research project entitled Construction and multi-site commissioning of multiple fluorescence correlation spectrometers [Project No. 12(4)/2007-PDD]. VS gratefully acknowledges CSIR for fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Vaishali Samant or G Naresh Patwari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 238 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Samant, V., Dey, A. & Naresh Patwari, G. Probing the interaction between human serum albumin and the sodium dodecyl sulphate with fluorescence correlation spectroscopy. J Chem Sci 132, 109 (2020). https://doi.org/10.1007/s12039-020-01816-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12039-020-01816-y

Navigation