Skip to main content
Log in

Ascending Heat and Mass Flow in Continental Crust: on the Problem of Driving Forces of Tectogenesis

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Abstract

The geophysical and geochemical indicators of the ascending heat and mass flow in the continental crust—conductive heat flow through the surface of the crust and the isotopic composition of helium in freely circulating underground fluids—are considered. The tectonic ordering of the heat flow and the factors responsible for the dispersion in its density (q) are discussed. The sources and reservoirs of terrestrial helium are characterized; the stability of 3Не/4Не ratio in the geological section along the depth and in time is demonstrated; linear and areal variations in this ratio on different scales are revealed and their similarity with heat flow distribution is established. The correlations of helium isotopic composition in freely circulating underground fluids with the conductive heat flow density and helium composition in gases in the regions of recent volcanism as well as with strontium composition in young lavas indicate helium transport from the mantle to the crust by the magmatic melts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.
Fig. 6.
Fig. 7.
Fig. 8.
Fig. 9.
Fig. 10.
Fig. 11.
Fig. 12.
Fig. 13.

Similar content being viewed by others

REFERENCES

  1. Allard, P., Carbonnelle, J., Dajlevic, D., Le Bronec, J., Morel, P., Robe, M.C., Maurenas, J.M., Faivre-Pierret, R., Martin, D., Sabroux, J.C., and Zettwoog, P., Eruptive and diffuse emissions of CO2 from Mount Etna, Nature, 1991, vol. 351, pp. 387–3911.

    Google Scholar 

  2. Allard, P., Jean-Baptiste, Ph., D’Allessandro, W., Parello, F., Parisi, B., and Flehoc, C., Mantle-derived helium in groundwaters and gases of Mount Etna, Italy, Earth Planet. Sci. Lett., 1997, vol. 148, pp. 501–516.

    Google Scholar 

  3. Alwarez, L.W. and Cornog, R., Helium and hydrogene on mass 3, Phys. Rev., 1939, vol. 56, no. 6, p. 613.

    Google Scholar 

  4. Andrews, J.N., Hussain, N., and Youngman, M.J., Atmospheric and radiogenic gases in groundwaters from the Strippa granite, Geochim. Cosmochim. Acta, 1988, vol. 53, pp. 1831–1841.

    Google Scholar 

  5. Arkhangel’skii, A.D. and Shatskii, N.S., USSR tectonics scheme, Byull. Mosk. O-va. Ispyt. Prir., Otd. Geol., 1933, vol. 11, no. 4, pp. 323–348.

    Google Scholar 

  6. Ballentine, C.J. and Burnard, P.G., Production, release and transport of noble gases in the continental crust, Rev. Mineral. Geochem., 2002, vol. 47, pp. 481–538.

    Google Scholar 

  7. Bashorin, V.N., Isotopic composition of helium in the fault zones of the Urals, Mater. VII Vses. simp. po stabil’nym izotopam v geokhimii (Proc. VII All-Union Symp. on Stable Isotopes in Geochemistry), Moscow: GEOKHI AN SSSR, 1976, pp. 97–98.

  8. Bellani, S., Magro, G., and Gherardi, F. Heat flow and helium isotopes in the geothermal areas of Tuscany (Central Italy), Geotherm. Resour. Counc.,Trans., 2015, vol. 39, pp. 399–405.

    Google Scholar 

  9. Berdichevsky, M.N., Vanyan, L.L., and Koshurnikov, A.V., Magnetotelluric sounding in the Baikal rift zone, Izv. Phys. Solid Earth, 1999, vol. 35, no. 10, pp. 793–814.

    Google Scholar 

  10. Bottomley, D.J., Ross, J.D., and Clarke, W.B., Helium and neon isotope geochemistry of some groundwaters from the Canadian Precambrian Shield, Geochim. Cosmochim. Acta, 1984, vol. 48, pp. 1973–1985.

    Google Scholar 

  11. Ćermak, V., Heat flow investigation in Czechoslovakia, in KAPG Geophys. Monogr.“Geoelectric and Geothermal Studies,” Adam, A., Ed., Budapest: Akad. Kiado, 1976, pp. 414–424.

    Google Scholar 

  12. Chapman, D. and Pollack, H., Global heat flow: a new look, Earth Planet. Sci. Lett., 1976, vol. 28, no. 1, pp. 23–32.

    Google Scholar 

  13. Clarke, W.B., Beg, M.A., and Craig, H., Excess of 3He in the sea: evidence for terrestrial primordial helium, Earth Planet. Sci. Lett., 1969, vol. 6, pp. 213–220.

    Google Scholar 

  14. Clark, I.D., Al, T., Jensen, M., Kennell, L., Mazurek, M., Mohapatra, R., and Raven, K.G., Paleozoic-age brine preserved in an Ordovician shale aquiclude, Geology, 2013, vol. 41, pp. 951–954.

    Google Scholar 

  15. Craig, H. and Lupton, J.E., Primordial neon, helium, and hydrogen in oceanic basalts, Earth Planet. Sci. Lett., 1976, vol. 31, pp. 369–385.

    Google Scholar 

  16. Craig, H., Welhan, J.A., and Hilton, D.R., Hydrothermal vents in the Loihi caldera: Alvin results, EOS, Trans. Am. Geophys. Union, 1987, vol. 68, p. 1553.

    Google Scholar 

  17. Du, J., 3He/4He ratios and heat flow in the continental rift valley, in Works of Gas Geochemistry, Xu., Y., Ed., Lanzhou: Gansu Sci. Technol. Press, 1992, pp. 165–171.

  18. Duchkov, A.D., Shvartsman, Yu.G., and Sokolova, L.S., Deep-level heat flow studies in the Tien Shan: advances and drawbacks, Russ. Geol. Geophys., vol. 42, no. 10, pp. 1516–1531.

  19. Gerling, E.K., Helium migration from minerals and rocks, Tr. Radievogo Inst. V.G. Khlopina, 1957, vol. 6, pp. 64–87.

    Google Scholar 

  20. Gordienko, V.V. and Tarasov, V.N., Sovremennaya aktiviza-tsiya i izotopiya geliya territorii Ukrainy (Modern Activation and Helium Isotopy of the Territory of Ukraine), Kyiv: Znannya, 2001.

  21. Graham, D., Noble gas isotope geochemistry of mid-oceanic ridge and ocean island basalts: characterization of mantle sources reservoirs, Rev. Mineral. Geochem., 2002, vol. 47, pp. 247–318.

    Google Scholar 

  22. Grieshaber, E., O’Nions, R.K., and Oxburgh, E.R., Helium isotope systematics in crustal fluids from the Eifel, Rhine Graben and Black Forest, FRG, Chem. Geol., 1992, vol. 99, pp. 213–235.

    Google Scholar 

  23. Hamza, V.M. and Muños, M., Heat flow map of South America, Geothermics, 1996, vol. 25, no. 6, pp. 599–646.

    Google Scholar 

  24. Hamza, V.M. and Verma, R.K., The relationship of heat flow with the age of basement rocks, Bull. Volcanol., 1969, vol. 33, no. 1, pp. 123–152.

    Google Scholar 

  25. Hasterok, D., Global Heat Flow Database, Adelaide: Univ. Adelaide, 2016. http: heatflow.org/data.

    Google Scholar 

  26. Heat flow map of Italy 1 : 2 500 000, (CNR-IIRG, Firenze: S.El.CA, 1991).

  27. Hilton, D.R. and Craig, H., A helium isotope transect along the Indonesian archipelago, Nature, 1989b, vol. 342, pp. 906–908.

    Google Scholar 

  28. Hilton, D.R. and Craig, H., The Silljan deep well: helium isotope results, Geochim. Cosmochim. Acta, 1989a, vol. 53, pp. 3311–3316.

    Google Scholar 

  29. Hooker, P.J., Bertrami, P.J., Lombardi, S., O’Nions, R.K., and Oxburgh, E.R., Helium-3 anomalies and crust-mantle interaction in Italy, Geochim. Cosmochim. Acta, 1985, vol. 49, no. 12, pp. 2505–2513.

    Google Scholar 

  30. Hurley, P.M., Fairbairn, H.W., and Pinson, W.H. Jr., Rb-Sr isotopic evidence in the origin of potash-rich lavas of Western Italy, Earth Planet. Sci. Lett., 1969, vol. 5, pp. 301–306.

    Google Scholar 

  31. Italiano, F., Nuccio, P.M., Nakai, S., and Wakita, H., Light-noble gas isotopic ratios in gases from Mt. Etna (Southern Italy): implications for mantle contamination and volcanic activity, J. Geophys. Res., 1999, vol. 85, no. B6, pp. 3115–3121.

    Google Scholar 

  32. Italiano, F., Martelli, M., Martinelli, M., and Nuccio, P.M., Geochemical evidence of melt intrusions along lithospheric faults of the Southern Apennines, Italy: geodynamics and seismogenic implications, J. Geophys. Res., 2000, vol. 105, no. B6, pp. 13569–13578.

    Google Scholar 

  33. Jacobsen, S.B. and Wasserburg, G.J., The mean age of mantle and crustal reservoirs, J. Geophys. Res., 1979, vol. 84, pp. 7411–7427.

    Google Scholar 

  34. Jenden, P.D., Hilton, D.R., Kaplan, I.R., and Craig, H., Abiogenic hydrocarbons and mantle helium in oil and gas fields, U.S. Geol. Surv. Prof. Pap., 1993, no. 1570, pp. 31–55.

  35. Khain, V.E., Levin L.E., and Tuliani, L.I., Some quantitative parameters of the global structure of the Earth, Geotektonika, 1982, no. 6, pp. 25–37.

  36. Khutorskoi M.D., Geotermiya Tsentral’no-Aziatskogo skladchatogo poyasa (Geothermy of the Central Asian Fold Belt), Moscow: RUDN, 1996.

  37. Khutorskoi, M.D. and Polyak, B.G., Role of radiogenic heat generation in surface heat flow formation, Geotectonics, 2016, vol. 50, no. 2, pp. 179–195.

    Google Scholar 

  38. Kutas, R.I. and Gordienko, V.V., The thermal field of the Carpathians and some issues of geothermy, in Energetika geologicheskikh i geofizicheskikh protsessov: Tr. Mosk. O-va. Ispyt. Prir., otd. geol. (Energy of Geological and Geophysical Processes: Trans. Moscow Soc. Nat., geol. sect.), Moscow: Nauka, 1972, vol. 46, pp. 75–80.

    Google Scholar 

  39. Kutas, R.I., Lubimova, E.A., and Smirnov, Ya.B., Heat flow map of the European part of the USSR and its geological and geophysical interpretation, in Geoelectric and Geothermal Studies, Adam, A., Ed., Budapest: Akad. Kiado, 1976, pp. 443–449.

    Google Scholar 

  40. Lysak, S.V., Teplovoi potok kontinental’nykh riftovykh zon (Heat Flow of Continental Rift Zones), Novosibirsk: Nauka, Sib. otd-nie, 1988.

  41. Mamyrin, B.A. and Tolstikhin, I.N., Izotopy geliya v prirode (Helium Isotopes in Nature), Moscow: Energoizdat, 1981.

  42. Mamyrin, B.A., Tolstikhin, I.N., Anufriev, G.S., and Kamenskii, I.L., Anomalous isotopic composition of helium in volcanic gases, Dokl. Akad. Nauk SSSR, 1969, vol.184, no. 5, pp. 1197–1199.

    Google Scholar 

  43. Marakushev, A.A. and Marakushev, S.A., Hydrogen breath of the Earth—its origin, geological and biological consequences, Mezhdunar. Nauchn. Zh. “Al’tern. Energ. Ekol.,” 2008, no. 1, pp. 152–170.

  44. Martelli, M., Nuccio, P.M., Stuart, F.M., Burgess, R., Ellam, R.V., and Italiano, F., Helium-strontium isotope constraints on mantle evolution beneath Roman Comagmatic Province, Italy, Earth Planet. Sci. Lett., 2004, vol. 224, pp. 295–308.

    Google Scholar 

  45. Marty, B. and Tolstikhin, I.N., CO2 fluxes from mid-oceanic ridges, arcs and plumes, Chem. Geol., 1998, vol. 145, pp. 233–248.

    Google Scholar 

  46. Miller, R.L. and Khan, J.S., Statistical Analysis in the Geological Sciences, New York: Wiley, 1962.

    Google Scholar 

  47. Morgan, W.J., Convection plumes in the lower mantle, Nature, 1971, vol. 230, pp. 42–43.

    Google Scholar 

  48. Newell, D.L., Crossey, L.Y, Karlstrom, K.E., Fisher, T.P., and Hilton, D.R., Continental-scale links between the mantle and groundwater systems of the western United States: Evidence from travertine springs and regional He isotope data, GSA Today, 2005, vol. 15, no. 12, pp. 115–157.

    Google Scholar 

  49. Newell, D.L., Jessup, M.J., Hilton, D.R., Shaw, C.A., and Hughes, C.A., Mantle-derived helium in hot springs of the Cordillera Blanca, Peru: Implications for mantle-to-crust fluid transfer in a flat-slab subduction setting, Chem. Geol., 2015, vol. 417, pp. 200–209.

    Google Scholar 

  50. O’Nions, R.K. and Oxburgh, E.R., Heat and helium in the Earth, Nature, 1983, vol. 306, pp. 429–431.

    Google Scholar 

  51. O’Nions, R.K. and Oxburgh, E.R., Helium, volatile fluxes and the development of continental crust, Earth Planet. Sci. Lett., 1988, vol. 90, pp. 331–347.

    Google Scholar 

  52. Parello, F., Allard, P., D’Alessandro, W., Federico, C., Jean-Baptiste, P., and Catani, O., Isotope geochemistry of Pantelleria volcanic fluids, Sicily Channel rift: a mantle volatile end-member for volcanism in Southern Europe, Earth Planet. Sci. Lett., 2000, vol. 180, pp. 325–339.

    Google Scholar 

  53. Pecoraino, G. and Giammanco, S., Geochemical characterization and temporal changes in parietal gas emissions at Mt.Etna (Italy) during the period July 2000–July 2003, Terr. Atmos. Oceanic Sci., 2005, vol. 16, no. 4, pp. 805–842.

    Google Scholar 

  54. Podgornykh, L.V. and Khutorskoi, M.D., Planetarnyi teplovoi potok. Karta masshtaba 1 : 30 000 000 i ob”yasnitel’naya zapiska k nei (Planetary Heat Flow: 1 : 30 000 000 Map and Explanatory Note), Moscow–St.-Petersburg: Orgservis, 1997. http://geotherm.ginras.ru.

  55. Pogrebnoi, V.N. and Sabitova, T.M., The block structure of High Asia and adjacent territories according to seismological and magnetometric data, Izv. Akad. Nauk SSSR, Fiz. Zemli, 1989, no. 8, pp. 25–30.

  56. Pollack, H.N., Hurter, S.J., and Johnson, J.R., Heat flow from the Earth interior: analysis of the global data set, Rev. Geophys., 1993, vol. 31, pp. 267–280. http://heatflow.org.

    Google Scholar 

  57. Polyak, B.G., Helium isotopes in the Baikal rift underground fluids and its framing (to the geodynamics of continental rift genesis), Russ. J. Earth Sci., 2000. vol. 2, no. 2, pp. 109–133.

    Google Scholar 

  58. Polyak, B.G., Spreading and rifting: Specific character of helium isotopic compositions, Geotectonics, 2004, vol. 38, no. 6, pp. 418–429.

    Google Scholar 

  59. Polyak, B.G. and Smirnov, Ya.B., Heat flow on continents, Dokl. Akad. Nauk SSSR, 1966, vol. 168, no. 1, pp. 170–172.

    Google Scholar 

  60. Polyak, B.G. and Smirnov, Ya.B., The connection of the deep heat flow with the tectonic structure of the continents, Geotektonika, 1968, no. 4, pp. 3–19.

  61. Polyak, B.G. and Tolstikhin, I.N., Isotopic composition of the Earth’s helium and the motive forces of tectogenesis, Chem. Geol., 1985, vol. 52, pp. 9–33.

    Google Scholar 

  62. Polyak, B.G., Prasolov, E.M., Buachidze, G.I., Kononov, V.I., Mamyrin, B.A., Surovtseva, L.I., Khabarin, L.V., and Yudenich, V.S., Isotopic distribution of helium and argon isotopes of fluids in the Alpine-Apennine region and its relationship to volcanism, Dokl. Akad. Nauk SSSR, 1979, vol. 247, no. 5, pp. 1220–1225.

    Google Scholar 

  63. Polyak, B.G., Tolstikhin, I.N., and Yakutseni, V.P., Helium isotopic composition and heat flux—geochemical and geophysical aspects of tectogenesis, Geotektonika, 1979a, no. 5, pp. 3–23.

  64. Polyak, B.G., Prasolov, E.M., Cermak, V., and Verkhovsky, A.B., Isotopic composition of noble gases in geothermal fluids of the Krusne Hory Mts. (Czechoslovakia) and geothermal anomaly, Geochim. Cosmochim. Acta, 1985, vol. 49, pp. 695–699.

    Google Scholar 

  65. Polyak, B.G., Prasolov, E.M., Kamenskii, I.L., Elma-nova, N.M., Sultankhodzhaev, A.A., and Chernov, I.G., The isotopic composition of He, Ne, and Ar in the underground fluids of the Tien Shan, Geokhimiya, 1989, no. 1, pp. 87–97.

  66. Polyak, B.G., Kamenskii, I.L., Sultankhodzhaev, A.A., Chernov, I.G., Barabanov, L.N., Lisitsyn, A.K., and Khabarovskaya M.V., Submantine helium in the fluids of the southeastern Tien Shan, Dokl. Akad. Nauk SSSR, 1990, vol. 312, no. 3, pp. 721–725.

    Google Scholar 

  67. Polyak, B.G., Prasolov, E.M., Tolstikhin, I.N., Yakovlev, L.E., Ioffe, A.I., Kikvadze, O.E., Vereina, O.B., and Vetrina, M.A. Noble Gas Isotope Data Base. 2015. http://data.deepcarbon.net/ ckan/dataset/523f4bf3-5de4-4c30-9c62-34af0dc62f70.

  68. Prasolov, E.M., Izotopnaya geokhimiya i proiskhozhdenie prirodnykh gazov (Isotopic Geochemistry and the Origin of Natural Gases), Leningrad: Nedra, Leningr. otd-nie, 1990.

  69. Rao, R.U.M., Rao, G.V., and Reddy, G.K., A dependence of continental heat flow—fantasy and facts, Earth. Planet. Sci. Lett., 1982, vol. 59, no. 2, pp. 288–302.

    Google Scholar 

  70. Ren, J., Wang, X., Chen, J., Li, C., Yang, H., and Quyang, Z., Leakage of mantle helium from the Liaodong Peninsula, China, Chin. Sci. Bull., 1988, vol. 43, no. 9, pp. 761–764.

    Google Scholar 

  71. Rison, W. and Craig, H., Helium isotopes and mantle volatiles in Loihi Seamount and Hawaiian Islands basalts and xenoliths, Earth Planet. Sci. Lett., 1983, vol. 66, pp. 407–426.

    Google Scholar 

  72. Sabitova, T.M., Stroenie zemnoi kory Kirgizskogo Tyan’-Shanya po seismologicheskim dannym (The Structure of the Earth’s Crust of the Kyrgyz Tien Shan According to Seismological Data), Frunze: Ilim, 1989.

  73. Sano, Y. and Fisher, T.P., The analysis and interpretation of noble gases in modern hydrothermal systems, in The Noble Gases as Geochemical Tracers (Advances in Isotope Geochemistry), Burnard, P., Ed., Berlin: Springer-Verlag, 2013, pp. 249–317.

    Google Scholar 

  74. Sano, Y. and Wakita, H., Geographical distribution of 3He/4He ratios in Japan: imlications for arc tectonics and incipient magmatism, J. Geophys. Res., 1985, vol. 90, pp. 8729–8741.

    Google Scholar 

  75. Sano, Y., Tominaga, T., Nakamura, Y., and Wakita, H., 3He/4He ratios in methane-rich gases in Japan, Geochem. J., 1982, vol. 16, pp. 237–245.

    Google Scholar 

  76. Sass, J.H., Blackwell, D.D., Chapman, D.S., and Roy, S., Heat flow of the crust of the United States, in Physical Properties of Rocks and Minerals, New York: McGraw-Hill, 1981, pp. 503–548.

    Google Scholar 

  77. Sclater, J. and Francheteau, J., The implication of terrestrial heat flow observations on current tectonics and geochemical models of the crust and upper mantle of the Earth, Geophys. J. R. Astron. Soc., 1970, vol. 20, no. 5, pp. 509–542.

    Google Scholar 

  78. Sclater, J., Parsons, B., and Jaupart, C., The heat flow through oceanic and continental crust and heat losses from the Earth, J. Geophys. Res., 1981, vol. 86, pp. 11535–11552.

    Google Scholar 

  79. Shatskii, N.S., On some vital problems of geotectonics, Sov. Geol., 1947, vol. 16, pp. 3–9 (the same: Selecta, vol. IV, Moscow: Nauka, 1965, pp. 61–67).

  80. Shatskii, N.S., Tectonics (or geotectonics), Bol’shaya Sovetsakaya Entsiklopediya (Great Soviet Encyclopedia), 1946, vol. 53, columns 752–757 (the same: Selecta, vol. IV, Moscow: Nauka, 1965, pp. 56–60).

  81. Smirnov, Ya.B., Heat flow at the bottom of water areas, Dokl. Akad. Nauk SSSR, 1966, vol. 168, no. 2, pp. 438–442.

    Google Scholar 

  82. Smirnov, Ya.B., Earth’s heat flux and energy problems of a geosyncline, in Energetika geologicheskikh i geofizicheskikh protsessov: Tr. Mosk. O-va. Ispyt. Prir., otd. geol. (Energy of Geological and Geophysical Processes: Trans. Moscow Soc. Nat., geol. sect.), Moscow: Nauka, 1972, vol. 46, pp. 52–74.

    Google Scholar 

  83. Tedesco, D. and Scarsi, P., Isotopic variation at the Solfatara crater, Earth Planet. Sci. Lett., 1999, vol. 171, pp. 465–480.

    Google Scholar 

  84. Toksöz, M.N. and Bird, P., Modelling of temperatures in continental convergent zones, Tectonophysics, 1977, vol. 41, pp. 181–193.

    Google Scholar 

  85. Tolstikhin, I.N., Izotopnaya geokhimiya geliya, argona i redkikh gazov (Isotopic Geochemistry of Helium, Argon and Rare Gases), Leningrad: Nauka, Leningr. otd-nie, 1986.

  86. Tolstikhin, I.N. and Kramers, J., The Evolution of Matter from the Big Bang to the Present Day Earth, Cambridge: Cambridge Univ. Press, 2008.

    Google Scholar 

  87. Tolstikhin, I., Waber, H.N., Kamensky, I., Loosli, H.H., Skiba, V., and Gannibal, M., Production, redistribution and loss of helium and argon isotopes in a thick sedimentary aquitard-aquifer system (Molasse Basin, Switzerland), Chemical Geology., 2011, vol. 286, pp. 48–58.

    Google Scholar 

  88. Torgersen, T. and Jenkins, W.J., Helium isotopes in geothermal systems: Iceland, the Geysers, Raft River and Steamboat Springs, Geochim. Cosmochim. Acta, 1982, vol. 46, pp. 739–748.

    Google Scholar 

  89. Vernadskii, V.I., Ocherki geokhimii (Essays on Geochemistry), Moscow: Gorgeonefteizdat, 1934.

    Google Scholar 

  90. Vernadskii, V.I., On the importance of radiogeology for modern geology, Doklad na 17-oi sessii Mezhdunar. geol. kongr. (Presentation at 17th Session Int. Geol. Cong.), Jule 26, 1937 (the same: Selecta, vol. I, Moscow: AN SSSR, 1954).

  91. Vernadskii, V.I., Istoriya mineralov zemnoi kory (vyp. III, § 271, Leningrad: ONTI, Khimteoret, 1936), Izbr. soch. (The History of Minerals in the Earth’s Crust (part III, Leningrad: ONTI, Khimteoret, 1936, § 271), Selecta), vol. IV, book 2, Moscow: Akad. Nauk SSSR, 1960.

  92. Vieira, F.P. and Hamza, V.M., Global heat flow: comparative analysis based on experimental data and theoretical values, Proc. 12th Int. Congr. of the Brazilian Geophys. Soc., Rio de Janeiro, 2011, pp. 1–6.

  93. Vitorello, I. and Pollack, H., On the variation of continental heat flow with age and thermal evolution of continents, J. Geophys. Res., 1980, vol. 85, pp. 983–995.

    Google Scholar 

  94. Wakita, H. and Sano, Y., 3He/4He ratios in CH4-rich natural gases suggest magmatic origin, Nature, 1983, vol. 305, pp. 792–794.

    Google Scholar 

Download references

ACKNOWLEDGMENTS

We are grateful to I.L. Kamenskii (Geological Institute, Kola Science Center, Russian Academy of Sciences, Apatity) and E.M. Prasolov (St. Petersburg State University–VSEGEI, St. Petersburg) for long cooperation and fruitful discussions of the subject of the paper.

We thank V.N. Bashorin (VIMS, Moscow) for updating the data on the concentration of helium in soil gases in the region of the Katai Fault and A.I. Ioffe (GIN RAS) for developing the special software module used for processing and comparing the data.

We appreciate the kind and constructive criticism on this study by A.G. and A.A. Kirdyashkin (IGM SB RAS) and S.Yu. Sokolova (GIN RAS).

Funding

The work was carried out under the State budget research theme no. 0135-2015-0021.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. G. Polyak.

Additional information

Translated by M. Nazarenko

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Polyak, B.G., Tolstikhin, I.N. & Khutorskoi, M.D. Ascending Heat and Mass Flow in Continental Crust: on the Problem of Driving Forces of Tectogenesis. Izv., Phys. Solid Earth 56, 490–510 (2020). https://doi.org/10.1134/S1069351320030088

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320030088

Keywords:

Navigation