Skip to main content
Log in

Recent Geodynamics and Slow Deformation Waves

  • Published:
Izvestiya, Physics of the Solid Earth Aims and scope Submit manuscript

Topical problems of the formation of slow deformation waves and their connection with recent geodynamic (deformational) processes are discussed. It is shown that the term “diffusion of stresses (displacements, strains)” is ill defined from the standpoint of physics of transfer phenomena because in the case of diffusion, mass transfer takes place, whereas the wave processes transfer energy. It is noted that the existing models describing the “diffusion of stresses” are solved based on the mathematical formalism of heat conduction theory which relies on the phenomenon of energy transfer. It is demonstrated that applying the term “wave” to the “stress diffusion” processes is untenable because in the classical sense, wave processes describe undamped (sustained, continuous) oscillations propagating in a homogeneous medium at constant velocity. The processes describing the “diffusion of stresses” form strongly damped oscillations whose propagation velocity substantially decreases with time. As a mechanism corresponding to the wave canonical concepts, a model of autowave deformation processes is proposed that implement the relay-race transfer and successive re-initiation of deformation activity from a fault to a fault or from one activated segment of a fault to another segment. Problematic issues of identifying the slow deformation waves are discussed, and the recommendations are proposed for constructing a network of observation points for the in situ measurements of spatiotemporal migration of the Earth’s surface deformations. It is substantiated that the existence of slow deformation waves does not explain the entire observed spatiotemporal spectrum of recent movements of the Earth’s surface.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

REFERENCES

  1. Andronov, A.A. and Chaikin, C.E., Theory of Oscillations, Princeton: Princeton Univ. Press, 1949.

    Google Scholar 

  2. Ben-Zion, Y. and Allam, A.A., Seasonal thermoelastic strain and postseismic effects in Parkfield borehole dilatometers, Earth Planet. Sci. Lett., 2013, vol. 379, pp. 120–126.

    Article  Google Scholar 

  3. Bird, R.B., Stewart, W.E., and Lightfoot, E.L., Transport Phenomena, New York: Wiley, 1965.

    Google Scholar 

  4. Birger, B.I., Stress propagation in the Earth’s lithosphere, Izv. Akad. Nauk SSSR,Fiz. Zemli, 1989, no. 12, pp. 3–18.

  5. Bornyakov, S.A., Salko, D.V., Seminskiy, K.Zh., Demberel, S., Ganzorig, D., Batsaykhan, Ts., and Togtokhbayar, S., Instrumental recording of slow deformation waves in the South Baikal geodynamic study site, Dokl. Earth Sci., 2017, vol. 473, no. 1, pp. 371–374.

    Article  Google Scholar 

  6. Bott, M.H.P. and Dean, D.S., Stress diffusion from plate boundaries, Nature, 1973, vol. 243, no. 5406, pp. 339–341.

    Article  Google Scholar 

  7. Bykov, V.G., Waves of activation in crustal faults, Tikhookean.Geol., 2000, vol. 19, no. 1, pp. 104–108.

    Google Scholar 

  8. Bykov, V.G., Prediction and observation of strain waves in the Earth, Geodyn. Tectonophys., 2018, vol. 9, no. 3, pp. 721–754.

    Article  Google Scholar 

  9. Bykov, V.G., Development of sliding regimes in faults and slow strain waves, Fiz. Mezomekh., 2019, vol. 22, no. 4, pp. 39–46.

    Google Scholar 

  10. Carslaw, H.S. and Jaeger, J.C., Conduction of Heat in Solids, Oxford: Clarendon Press, 1959.

    Google Scholar 

  11. Courant, R. and Hilbert, D., Methods of Mathematical Physics,vol. II:Partial Differential Equations, New York: Wiley, 1966.

    Google Scholar 

  12. Dobrovol’skii, I.P., Matematicheskaya teoriya podgotovki i prognoza tektonicheskogo zemletryaseniya (Mathematical Theory of the Preparation and Forecasting of a Tectonic Earthquake), Moscow: FIZMATLIT, 2009.

  13. Elsasser, W.H., Convection and stress propagation in the upper mantle, in The Application of Modern Physics to the Earth and Planetary Interiors, Runcorn, S.K., Ed., New York: Wiley, 1969, pp. 223–246.

    Google Scholar 

  14. Eshelby, J.D., Elastic inclusions and inhomogeneities, in Progress in Solid Mechanics, vol. 2, Sneddon, I.N. and Hill, R., Eds., Amsterdam: North Holland, 1961, pp. 89–140.

    Book  Google Scholar 

  15. Frenkel’, Ya.I., Statisticheskaya fizika (Statistical Physics), Moscow–Leningrad: AN SSSR, 1948.

  16. Ishii, H., Sato, T., Tachibana, K., Hashimoto, K., Murakami, E., Mishina, M., Miura, S., Sato, K., Takagi, A., Crustal strain, crustal stress and microearthquake activity in the northeastern Japan arc, Tectonophysics, 1983, vol. 97, nos. 1–4, pp. 217–230.

    Article  Google Scholar 

  17. Izyumov, S.F. and Kuzmin, Yu.O., Study of the recent geodynamic processes in the Kopet-Dag region, Izv. Phys. Solid Earth, 2014, vol. 50, no. 6. pp. 719–731.

    Article  Google Scholar 

  18. Kasahara, K., Earthquake Mechanics, Cambridge: Cambridge Univ. Press, 1981.

    Google Scholar 

  19. Kolmogorov, A.N., Petrovskii, I.G., and Piskunov, N.S., A study of the diffusion equation with increase in the amount of substance, and its application to a biological problem, Byull. Mosk. Gos. Univ.,Ser. A, 1937, vol. 1, no. 6, pp. 1–26.

    Google Scholar 

  20. Kuzmin, Yu.O., Recent geodynamics of the fault zones in sedimentary basins and earthquake preparation processes, in Prognoz zemletryasenii: Geodezicheskie metody issledovanii (Earthquake Forecasting: Geodetic Methods of Study), vol. 11, Moscow–Dushanbe: Donish, 1989, pp. 52–60.

  21. Kuzmin, Yu.O., Deformation autowaves in fault zones, Izv. Phys. Solid Earth, 2012, vol. 48, no. 1. pp. 1–16.

    Article  Google Scholar 

  22. Kuzmin, Yu.O., Recent geodynamics of the faults and paradoxes of the rates of deformation, Izv. Phys. Solid Earth, 2013, vol. 49, no. 5. pp. 626–642.

    Article  Google Scholar 

  23. Kuzmin, Yu.O., Recent geodynamics of fault zones: faulting in real time scale, Geodinam.Tektonofiz., 2014, vol. 5, no. 2, pp. 401–443.

    Article  Google Scholar 

  24. Kuzmin, Yu.O., Recent geodynamics of a fault system, Izv. Phys. Solid Earth, 2015, vol. 51, no. 4. pp. 480–485.

    Article  Google Scholar 

  25. Kuzmin, Yu.O., Recent geodynamics of dangerous faults, Izv. Phys. Solid Earth, 2016, vol. 52, no. 5. pp. 709–722.

    Article  Google Scholar 

  26. Kuzmin, Yu.O., Paradoxes of the comparative analysis of ground-based and satellite geodetic measurements in recent geodynamics, Izv. Phys. Solid Earth, 2017, vol. 53, no. 6. pp. 825–839.

    Article  Google Scholar 

  27. Kuzmin, Yu.O., Recent anomalous deformation of the ground surface in fault zones: shear or tensile faulting?, Geodinam.Tektonofiz., 2018a, vol. 9, no. 3, pp. 967–987.

    Article  Google Scholar 

  28. Kuzmin, Yu.O., Recent geodynamics of tensile faults, Izv. Phys. Solid Earth, 2018b, vol. 54, no. 6. pp. 886–903.

    Article  Google Scholar 

  29. Kuzmin, Yu.O., Recent geodynamics: from crustal movements to monitoring critical objects, Izv. Phys. Solid Earth, 2019a, vol. 55, no. 1. pp. 65–86.

    Article  Google Scholar 

  30. Kuzmin, Yu.O., Induced deformations of fault zones, Izv. Phys. Solid Earth, 2019b, vol. 55, no. 5. pp. 753–765.

    Article  Google Scholar 

  31. Lykov, A.V. and Berkovskii, B.M., Konvektsiya i teplovye volny (Convection and Heat Waves), Moscow: Energiya, 1974.

  32. Melosh, H.J., Nonlinear stress propagation in the Earth’s upper mantle, J. Geophys. Res., 1976, vol. 81, no. 32, pp. 5621–5632.

    Article  Google Scholar 

  33. Mishchenko, E.F., Sadovnichii, V.A., Kolesov, A.Yu., and Rozov, N.Kh., Avtovolnovye protsessy v nelineinykh sredakh s diffuziei (Autowave Processes in Nonlinear Media with Diffusion), Moscow: FIZMATLIT, 2010.

  34. Mukhamediev, Sh.A., Grachev, A.F., and Yunga, S.L., Nonstationary dynamic control of seismic activity of platform regions by mid-ocean ridges, Izv., Phys. Solid Earth, 2008, vol. 44, no. 1, pp. 9–17.

  35. Nikolaevsky, V.N., Mechanics of geomaterials and earthquakes, in Science and Technics Results: Mechanics of Deformed Solid Body, vol. 15, Moscow: VINITI, 1983, pp. 149–230.

    Google Scholar 

  36. Paulson, A., Zhong, S., and Wahr, J., Modelling post-glacial rebound with lateral viscosity variations, Geophys. J. Int., 2005, vol. 163, pp. 357–371.

    Article  Google Scholar 

  37. The Scientific Papers of James Clerk Maxwell, Niven, W.D., Ed., Cambridge: Cambridge Univ. Press, 1890.

    Google Scholar 

  38. Turcotte, D.L. and Shubert, G., Geodynamics, Cambridge: Cambridge Univ. Press, 2002.

    Book  Google Scholar 

  39. Vasil’ev, V.A., Romanovskii, Yu.M., Yakhno, V.G., Avtovolnovye protsessy (Autowave Processes), Moscow: Nauka, 1987.

  40. Whitham, G., Linear and Nonlinear Waves, New York: Wiley, 1974.

    Google Scholar 

  41. Zel’dovich, Ya.B., Barenblatt, G.I., Librovich, V.B., and Makhvelidze, G.M., Matematicheskaya teoriya goreniya i vzryva (Mathematical Theory of Combustion and Explosion), Moscow: Nauka, 1980.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yu. O. Kuzmin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kuzmin, Y.O. Recent Geodynamics and Slow Deformation Waves. Izv., Phys. Solid Earth 56, 595–603 (2020). https://doi.org/10.1134/S1069351320040059

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1069351320040059

Keywords:

Navigation