Skip to main content
Log in

Permafrost Degradation as a Supporting Factor for the Biodiversity of Tundra Ecosystems

  • Published:
Contemporary Problems of Ecology Aims and scope

Abstract

Highly detailed images acquired using unmanned aerial imaging made it possible to describe the structural features of a certain type of thermokarst depression. These depressions developed in edoma deposits in the southern part of the typical tundra subzone in the Lena Delta. The geomorphology and vegetation of the model depression are characterized by a combination of GIS analysis and ground survey. Detailed mapping has shown that the surface of the depression bottom consists of a “baidjarakh” field covered by the complex vegetation of highly productive plant communities dominated by grasses and graminoids. A comparison of satellite images and topographic maps from different years has shown that the depression appeared from a shallow thermokarst lake drained no later than 40 years ago. The depression terrain and vegetation are determined by its origin and the composition of the surface geological substrate. Depression vegetation is quite a contrast to zonal tundra in regards to its structure and floristic composition. It contains few species which tend to be more typical for southern distribution. Such spots serve as feeding places for herbivorous animals and, in the past, may have been an important part of the Pleistocene megafauna forage. Thermokarst events were typical for the ice-complex through the whole period of its formation, but might differ in intensity and area depending on climate conditions. Nowadays, the size and lifetime of thermokarst lakes depends on their position in the terrain and the thermoerosion intensity. In the tundra landscape, thermokarst plays an important role in the creation of new habitats and biodiversity support for plants and animals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Abdurakhmanov, G.M., Krivolutskii, D.A., Myalo, E.G., and Ogureeva, G.N., Biogeografiya (Biogeography), Moscow: Akademiya, 2008.

    Google Scholar 

  2. Anisimov, O.A., Velichko, A.A., Demchenko, P.F., Eliseev, A.V., Mokhov, I. I. and Nechaev, V.P., Effect of climate change on permafrost in the past, present, and future, Izv., Atmos. Ocean. Phys., 2002, vol. 38, no. 1, pp. 25–39.

    Google Scholar 

  3. Are, F.E. and Reimnitz, E., An overview of the Lena River delta setting: geology, tectonics, geomorphology, and hydrology, J. Coastal Res., 2000, vol. 16, pp. 1083–1093.

    Google Scholar 

  4. Atlas sel’skogo khozyaistva Yakutskoi ASSR (Atlas of Agriculture in Yakut ASSR), Moscow: Glav. Uprav. Geodez. Kartogr., 1989.

  5. Avetisov, G.P., Geodynamics of the zone of continental continuation of Mid-Arctic earthquakes belt (Laptev Sea), Phys. Earth Planet. Inter., 1999, vol. 114, pp. 59–70.

    Article  Google Scholar 

  6. Boike, J., Nitzbon, J., Anders, K., Grigoriev, M., Bolshiyanov, D., Langer, M., Lange, S., Bornemann, N., Morgenstern, A., Schreiber, P., Wille, Ch., Chadburn, S., Gouttevin, I., Burke, E., and Kutzbach L., A 16-year record (2002–2017) of permafrost, active-layer, and meteorological conditions at the Samoylov Island Arctic permafrost research site, Lena River delta, northern Siberia: an opportunity to validate remote-sensing data and land surface, snow, and permafrost models, Earth Syst. Sci. Data, 2019, vol. 11, pp. 261–299.

    Article  Google Scholar 

  7. Bol’shiyanov, D.Yu., Makarov, A.S., Shnaider, V., and Shtof, G., Proiskhozhdenie i razvitie del’ty reki Leny (Origin and Development of the Lena River Delta), St. Petersburg: Arkt. Antarkt. Nauchno-Issled. Inst., 2013.

  8. Cherepanov, S.K., Sosudistye rastneiya Rossii i sopredel’nykh gosudarstv (v predelakh byvshego SSSR) (Vascular Plants of Russia and Adjacent Countries within the Former USSR), St. Petersburg: Mir i Sem’ya, 1995.

  9. French, H.M., The Periglacial Environment, Chichester: Wiley, 2007, 3rd ed.

    Book  Google Scholar 

  10. Gelashvili, D.B., Rozenberg, G.S., Iudin, D.I., Yakimov, V.N., and Solntsev, L.A., Fractal aspects of structural stability of biotic communities, Biosfera, 2013, vol. 5, no. 2, pp. 143–159.

    Google Scholar 

  11. Girgor’ev, M.N., Kriomorfogenez ust’evoi oblasti r. Leny (Cryomorphogenesis of the Estuary Area of the Lean River), Yakutsk: Inst. Merzlotoved., Sib. Otd., Ross. Akad. Nauk, 1993.

  12. Grigor’ev, N.F., Temperature of permafrost minerals in the Lena River basin (Yakutsk), in Usloviya zaleganiya i svoistva mnogoletnemerzlykh porod na territorii Yakutskikoi ASSR (Conditions of Laying and Properties of Permafrost Minerals in Yakut ASSR), Ykutsk: Yakutknigoizdat, 1960, no. 2, pp. 97–101.

  13. Hugelius, G., Strauss, J., Zubrzycki, S., Harden, J.W., Schuur, E.A.G., Ping, C.- L., Schirrmeister, L., Grosse, G., Michaelson, G.J., Koven, C.D., O’Donnell, J. A., Elberling, B., Mishra, U., Camill, P., Yu, Z., Palmtag, J., and Kuhry, P., Estimated stocks of circumpolar permafrost carbon with quantified uncertainty ranges and identified data gaps, Biogeosciences, 2014, vol. 11, pp. 6573–6593.

    Article  Google Scholar 

  14. Ignatov, M.S., Afonina, O.M., Ignatova, E.A., et al., Checklist of mosses of East Europe and North Asia, Arctoa, 2006, vol. 15, pp. 1–130. https://doi.org/10.15298/arctoa.15.01

    Article  Google Scholar 

  15. Kartoziia, A., Assessment of the ice wedge polygon current state by means of UAV imagery analysis (Samoylov Island, the Lena delta), Remote Sens., 2019, vol. 11, no. 13, art. ID 1627.

    Article  Google Scholar 

  16. Katasonov, E.M., Time of formation of thermokarst depressions, in Stroenie i absolyutnaya geokhronologiya alasnykh otlozhenii tsentral’noi Yakutii (The Structure and Absolute Geochronology of Alas Deposits in Central Yakutia), Novosibirsk: Nauka, 1979, pp. 66–72.

  17. Kravtsova, V.I., Distribution of thermokarst lakes in Russia within the zone of modern permafrost area, Vestn. Mosk. Univ., Ser. 5: Geogr., 2009, no. 3, pp. 33–42.

  18. Lebedeva, N.V., Drozdov, N.N., and Krivolutskii, D.A., Biologicheskoe raznoobrazie (Biological Diversity), Moscow: Vlados, 2004.

  19. Matveeva, N.V., Heterogenity of vegetation cover in Arctic and its classification, Materialy III Vserossiiskoi shkoly-konferentsii “Aktual’nye problemy geobotaniki” (Proc. III All-Russ. School-Conf. “Current Problems of Geobotany”), Petrozavodsk: Karel. Nauchn. Tsentr, Ross. Akad. Nauk, 2007, pp. 212–225.

  20. Matveyeva, N.V., Scales and levels of vegetation cover heterogeneity in the Arctic, Abh. Westfal. Mus. Naturkd., 2008, vol. 70, nos. 3–4, pp. 325–334.

    Google Scholar 

  21. McGill, B.J., Towards a unification of unified theories of biodiversity, Ecol. Lett., 2010, vol. 13, no. 5, pp. 627–642.

    Article  Google Scholar 

  22. Morgenstern, A., Grosse, G., Günther, F., Fedorova, I.V., and Schirrmeister, L., Spatial analyses of thermokarst lakes and basins in yedoma landscapes of the Lena delta, Cryosphere, 2011, vol. 5, pp. 849–867.

    Article  Google Scholar 

  23. Morgenstern, A., Ulrich, M., Günther, F., Roessler, S., Fedorova, I.V., Rudaya, N.A., Wetterich, S., Boike, J. and Schirrmeister, L., Evolution of thermokarst in East Siberian ice-rich permafrost: a case study, Geomorphology, 2013, vol. 201, pp. 363–379.

    Article  Google Scholar 

  24. Plenchenko, V.V., Tsibizov, L.V., Kartoziia, A.A., and Esin, E.I., Electrotomography of a bowl of drained thermokarst lake on Kurungnakh Island in the Lena River delta, Probl. Arkt. Antarkt., 2019, vol. 65, no. 1, pp. 92–104.

    Article  Google Scholar 

  25. Rebristaya, O.V., Skvortsov, A.K., Tolmachev, A.I., Tsvelev, N.N., and Yurtsev, B.A., Arkticheskaya flora SSSR. Vyp. 2. Semeistvo Gramineae (Arctic Flora of USSR, No. 2: Family Gramineae), Moscow, 1964, pp. 40–42.

  26. Romanovskii, N.N., Hubberten, H.- W., Gavrilov, A.V., Tumskoy, V.E., Tipenko, G.S., Grigoriev, M.N., and Siegert, C., Thermokarst and land-ocean interactions, Laptev Sea region, Russia, Permafrost Periglacial Process., 2000, vol. 11, pp. 137–152.

    Article  Google Scholar 

  27. Strauss, J., Schirrmeister, L., Grosse, G., Wetterich, S., Ulrich, M., Herzschuh, U. and Hubberten, H.-W., The deep permafrost carbon pool of the yedoma region in Siberia and Alaska, Geophys. Res. Lett., 2013, vol. 40, pp. 6165–6170.

    Article  CAS  Google Scholar 

  28. Schwamborn, G., Rachold, V. and Grigoriev, M.N., Late quaternary sedimentation history of the Lena Delta, Quat. Int., 2002, vol. 89, pp. 119–134.

    Article  Google Scholar 

  29. Tarnocai, C., Canadell, J.G., Schuur, E.A.G., Kuhry, P., Mazhitova, G., and Zimov, S., Soil organic carbon pools in the northern circumpolar permafrost region, Global Biogeochem. Cycles, 2009, vol. 23, art. ID GB2023.

    Article  Google Scholar 

  30. Vasil’chuk, Yu.K., A model of cyclic pulsating formation of syngenetic strata with powerful re-veined ice, Kriosfera Zemli, 1999, vol. 3, no. 2, pp. 3–12.

    Google Scholar 

  31. Vohnlanthen, C.M., Walker, D.A., Raynolds, M.K., Kade, A.N., Kuss, P., Daniëls, F.J.A., and Matveyeva, N.V., Patterned-ground plant communities along a bioclimatic gradient in the high Arctic, Phytocoenologia, 2008, vol. 38, nos. 1–2, pp. 23–63.

    Article  Google Scholar 

  32. Walker, D.A., Epstein, H.E., Romanovsky, V.E., Ping, C.L., Michaelson, G.J., Daanen, R.P., Shur, Y., Peterson, R.A., Krantz, W.B., Raynolds, M.K., Gould, W.A., Gonzalez, G., Nickolsky, D.J., Vohnlanthen, C.M., Kade, A.N., et al., Arctic patterned-ground ecosystems: a synthesis of field studies and models along a North American Arctic transect, J. Geophys. Res.: Biogeosci., 2008, vol. 113, art. ID G03S01.

    Google Scholar 

  33. Walker, D.A., Daniëls, F.J.A., Matveyeva, N.V., Šibík, J., Walker, M.D., Breen, A.L., Druckenmiller, L.A., Raynolds, M.K., Bültmann, H., Hennekens, S., Buchhorn, M., Epstein, H.E., Ermokhina, K., Fosaa, A.M., Heidmarsson, S., et al., Circumpolar Arctic vegetation classification, Phytocoenologia, 2018, vol. 48, no. 2, pp. 181–201.

    Article  Google Scholar 

  34. Walter, K.M., Edwards, M.E., Grosse, G., Zimov, S., and Chapin, III, F.S., Thermokarst lakes as a source of atmospheric CH4 during the last deglaciation, Science, 2007, vol. 318, pp. 633–636.

    Article  CAS  Google Scholar 

  35. Westhoff, V. and van der Maarel, E., The Braun-Blanquet approach, in Ordination and Classification of Communities, Dordrecht: Dr. W. Junk, 1973, pp. 617–726.

    Google Scholar 

  36. Wetterich, S., Kuzmina, S., Andreev, A.A., Kienast, F., Meyer, H., Schirrmeister, L., Kuznetsova, T., and Sierralta, M., Palaeoenvironmental dynamics inferred from late Quaternary permafrost deposits on Kurungnakh Island, Lena Delta, Northeast Siberia, Russia, Quat. Sci. Rev., 2008, vol. 27, pp. 1523–1540.

    Article  Google Scholar 

  37. Zverev, A.A., Informatsionnye tekhnologii v issledovaniyakh rastitel’nogo pokrova (Information Technologies in Studies of Vegetation Cover), Tomsk, 2007.

    Google Scholar 

Download references

Funding

This study was carried out as part of State Task of the Central Siberian Botanical Garden, Siberian Branch, Russian Academy of Sciences, no. AAAA-A17-117012610052-2 and the state assignment of the Institute of Geology and Mineralogy, Siberian Branch, Russian Academy of Sciences, with partial financial support from the integration project of the Siberian Branch of the Russian Academy of Sciences (“Integrated Characterization of the Cryolithozone Based on Remote Sensing, Geological, Geophysical, and Geobotanical Data and Soil Studies Carried out on the Basis of the Samoilovsky Island Scientific Research Station (2018–2020)”) and Russian Foundation for Basic Research grant 18-55-11003 AF_t “Assessing the Circumpolar Balance of N2O.”

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to N. N. Lashchinskiy.

Ethics declarations

Conflict of interests. The authors declare that they have no conflicts of interest.

Statement on the welfare of humans or animals. This article does not contain any studies involving animals performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lashchinskiy, N.N., Kartoziia, A.A. & Faguet, A.N. Permafrost Degradation as a Supporting Factor for the Biodiversity of Tundra Ecosystems. Contemp. Probl. Ecol. 13, 401–411 (2020). https://doi.org/10.1134/S1995425520040071

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1995425520040071

Keywords:

Navigation