Skip to main content
Log in

Advantage of Preserving Bi-orientation Structure of Isotactic Polypropylene through Die Drawing

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The isotactic polypropylene (iPP) usually shows a unique parent-daughter lamellae structure in which the parent and daughter lamellae are against each other with a near perpendicular angle (80° or 100°). Inducing a high fraction of oriented cross-hatched structure in iPP during processing is desirable for designing the bi-oriented iPP products. We processed a commercial iPP via tensile-stretching and die-drawing to evaluate the structural evolution of oriented parent-daughter lamellae. It turned out that the die-drawing process had an advantage in attaining a high fraction of oriented cross-hatched structure of iPP, as compared to the free tensile stretching. Besides, the presence of α-nucleating agents affected the formation of oriented parent-daughter lamellae in the die-drawn samples whereas such influence diminished in the free stretched ones. It was found that the confined deformation inside the die led to the well-preserved oriented cross-hatched structure in the die-drawn iPP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Colombe, G.; Gree, S.; Lhost, O.; Dupire, M.; Rosenthal, M.; Ivanov, D. A. Correlation between mechanical properties and orientation of the crystalline and mesomorphic phases in isotactic polypropylene fibers. Polymer 2011, 52, 5630–5643.

    Article  CAS  Google Scholar 

  2. Hine, P. J.; Ward, I. M.; Jordan, N. D.; Olley, R.; Bassett, D. C. The hot compaction behaviour of woven oriented polypropylene fibres and tapes. I. Mechanicl porperties. Polymer 2003, 44, 1117–1131.

    Article  CAS  Google Scholar 

  3. Chen, X. D.; Xu, R. J.; Xie, J. Y.; Lin, Y. F.; Lei, C. H.; Li, L. B. The study of room-temperature stretching of annealed polypropylene cast film with row-nucleated crystalline structure. Polymer 2016, 94, 31–42.

    Article  CAS  Google Scholar 

  4. Gohil, R. M. Morphology shrinkage relationships in semicrystalline polymers-epitaxy, a way of eliminating amorphous contribution. Colloid Polym. Sci. 1992, 270, 128–133.

    Article  CAS  Google Scholar 

  5. Lu, Y.; Thompson, G.; Lyu, D.; Caton-Rose, P.; Coates, P.; Men, Y. F. Orientation direction dependency of cavitation in pre-oriented isotactic polypropylene at large strains. Soft Matter 2018, 14, 4432–4444.

    Article  CAS  PubMed  Google Scholar 

  6. Khoury, F. Spherulitic crystallization of isotactic polypropylene from solution—on evolution of monoclinic spherulites from dendritic chain-folded crystal precursors. J. Res. Natl. Bur. Stand. 1966, 70A, 29.

    Article  CAS  Google Scholar 

  7. Padden, F. J.; Keith, H. D. Crystallization in thin films of isotactic polypropylene. J. Appl. Phys. 1966, 37, 4013–4020.

    Article  CAS  Google Scholar 

  8. Binsbergen, F. L.; Delange, B. G. M. Morphology of polypropylene crystallized from melt. Polymer 1968, 9, 23–40.

    Article  CAS  Google Scholar 

  9. Lotz, B.; Wittmann, J. C. The molecular-origin of lamellar branching in the α-(monoclinic) form of isotactic polypropylene. J. Polym. Sci., Part B: Polym. Phys. 1986, 24, 1541–1558.

    Article  CAS  Google Scholar 

  10. Lotz, B.; Wittmann, J. C.; Lovinger, A. J. Structure and morphology of poly(propylenes): a molecular analysis. Polymer 1996, 37, 4979–4992.

    Article  CAS  Google Scholar 

  11. Alamo, R. G.; Brown, G. M.; Mandelkern, L.; Lehtinen, A.; Paukkeri, R. A morphological study of a highly structurally regular isotactic poly(propylene) fraction. Polymer 1999, 40, 3933–3944.

    Article  CAS  Google Scholar 

  12. Castelein, G.; Coulon, G.; Gsell, C. Polymers under mechanical stress: deformation of the nanostructure of isotactic polypropylene revealed by scanning force microscopy. Polym. Eng. Sci. 1997, 37, 1694–1701.

    Article  CAS  Google Scholar 

  13. Dias, P.; Kazmierczak, T.; Chang, A.; Ansems, P.; van Dun, J.; Hiltner, A.; Baer, E. Relationship of polymorphic crystalline phase texture to strain recovery and stiffness of a propylene-based elastomer. J. Appl. Polym. Sci. 2009, 112, 3736–3747.

    Article  CAS  Google Scholar 

  14. Raidt, T.; Hoeher, R.; Katzenberg, F.; Tiller, J. C. Multiaxial reinforcement of cross-linked isotactic poly(propylene) upon uniaxial stretching. Macromol. Mater. Eng. 2017, 302, 1600308.

    Article  CAS  Google Scholar 

  15. Meng, L. P.; Lin, Y. F.; Xu, J. L.; Chen, X. W.; Li, X. Y.; Zhang, Q. L.; Zhang, R.; Tian, N.; Li, L. B. A universal equipment for biaxial stretching of polymer films. Chinese J. Polym. Sci. 2015, 33, 754–762.

    Article  CAS  Google Scholar 

  16. Nogales, A.; Mitchell, G. R. R.; Vaughan, A. S. Anisotropic crystallization in polypropylene induced by deformation of a nucleating agent network. Macromolecules 2003, 36, 4898–4906.

    Article  CAS  Google Scholar 

  17. Nogales, A.; Mitchell, G. R. Development of highly oriented polymer crystals from row assemblies. polymer 2005, 46, 5615–5620.

    Article  CAS  Google Scholar 

  18. Nogales, A.; Olley, R. H.; Mitchell, G. R. Directed crystallisation of synthetic polymers by low-molar-mass self-assembled templates. Macromol. Rapid Commun. 2003, 24, 496–502.

    Article  CAS  Google Scholar 

  19. Lipp, J.; Shuster, M.; Feldman, G.; Cohen, Y. Oriented crystallization in polypropylene fibers induced by a sorbitol-based nucleator. Macromolecules 2008, 41, 136–140.

    Article  CAS  Google Scholar 

  20. Zhang, S.; Minus, M. L.; Zhu, L. B.; Wong, C. P.; Kumar, S. Polymer transcrystallinity induced by carbon nanotubes. Polymer 2008, 49, 1356–1364.

    Article  CAS  Google Scholar 

  21. Chang, B. B.; Schneider, K.; Patil, N.; Roth, S.; Heinrich, G. Microstructure characterization in a single isotactic polypropylene spherulite by synchrotron microfocus wide angle X-ray scattering. Polymer 2018, 142, 387–393.

    Article  CAS  Google Scholar 

  22. Troisi, E. M.; Caelers, H. J. M.; Peters, G. W. M. Full characterization of multiphase, multimorphological kinetics in flow-induced crystallization of iPP at elevated pressure. Macromolecules 2017, 50, 3869–3883.

    Article  CAS  Google Scholar 

  23. Nozue, Y.; Shinohara, Y.; Ogawa, Y.; Sakurai, T.; Hori, H.; Kasahara, T.; Yamaguchi, N.; Yagi, N.; Amemiya, Y. Deformation behavior of isotactic polypropylene spherulite during hot drawing investigated by simultaneous microbeam SAXS-WAXS and POM measurement. Macromolecules 2007, 40, 2036–2045.

    Article  CAS  Google Scholar 

  24. Liu, Y. P.; Hong, Z. H.; Bai, L. G.; Tian, N.; Ma, Z.; Li, X. Y.; Chen, L.; Hsiao, B. S.; Li, L. B. A novel way to monitor the sequential destruction of parent-daughter crystals in isotactic polypropylene under uniaxial tension. J. Mater. Sci. 2014, 49, 3016–3024.

    Article  CAS  Google Scholar 

  25. Coates, P. D.; Ward, I. M. Drawing of polymers through a conical die. Polymer 1979, 20, 1553–1560.

    Article  CAS  Google Scholar 

  26. Coates, P. D.; Caton-Rose, P.; Ward, I. M.; Thompson, G. Process structuring of polymers by solid phase orientation processing. Sci. China Chem. 2013, 56, 1017–1028.

    Article  CAS  Google Scholar 

  27. Lyu, D.; Sun, Y.; Thompson, G.; Lu, Y.; Caton-Rose, P.; Lai, Y.; Coates, P.; Men, Y. Die geometry induced heterogeneous morphology of polypropylene inside the die during die-drawing process. Polym. Test. 2019, 74, 104–112.

    Article  CAS  Google Scholar 

  28. Cheng, S. Z. D.; Janimak, J. J.; Zhang, A.; Hsieh, E. T. Isotacticity effect on crystallization and melting in polypropylene fractions: 1. Crystalline structures and ther thermodynamic preperty changes. Polymer 1991, 32, 648–655.

    Article  CAS  Google Scholar 

  29. Kristiansen, M.; Werner, M.; Tervoort, T.; Smith, P.; Blomenhofer, M.; Schmidt, H. W. The binary system isotactic polypropylene/bis(3,4-dimethylbenzylidene)sorbitol: phase behavior, nucleation, and optical properties. Macromolecules 2003, 36, 5150–5156.

    Article  CAS  Google Scholar 

  30. Yang, X.; Tuinea-Bobe, C.; Whiteside, B.; Coates, P.; Lu, Y.; Men, Y. Molecular weight dependency of β phase formation in injection-molded isotactic polypropylene. J. Appl. Polym. Sci. 2019, 136, 48555.

    Google Scholar 

  31. Hermans P.; Platzek P. Beiträge zur kenntnis des deformationsmechanismus und der feinstruktur der hydratzellulose. Kolloid Z. 1939, 88, 68–72.

    Article  CAS  Google Scholar 

  32. Polanyi, M. The X-ray fiber diagram. Z. Phys. 1921, 7, 149–180.

    Article  CAS  Google Scholar 

  33. Tortorella, N.; Beatty, C. L. Morphology and crystalline properties of impact-modified polypropylene blends. Polym. Eng. Sci. 2008, 48, 1476–1486.

    Article  CAS  Google Scholar 

  34. Zhu, P. W.; Edward, G. Orientational distribution of parent-daughter structure of isotactic polypropylene: a study using simultaneous synchrotron WAXS and SAXS. J. Mater. Sci. 2008, 43, 6459–6467.

    Article  CAS  Google Scholar 

  35. Lu, Y.; Lyu, D.; Cavallo, D.; Men, Y. Enhanced beta to alpha recrystallization in beta isotactic polypropylene with different thermal histories. Polym. Crystal. 2019, 2, e10040.

    Google Scholar 

  36. Fujiyama, M.; Wakino, T.; Kawasaki, Y. Structure of skin layer in injection-molded polypropylene. J. Appl. Polym. Sci. 1988, 35, 29–49.

    Article  CAS  Google Scholar 

  37. Kantz, M. R.; Newman, H. D.; Stigale, F. H. The skin-core morphology and structure-property relationships in injection-molded polypropylene. J. Appl. Polym. Sci. 1972, 16, 1249–1260.

    Article  CAS  Google Scholar 

  38. Lu, Y.; Chen, R.; Zhao, J.; Jiang, Z. Y.; Men, Y. F. Stretching temperature dependency of fibrillation process in isotactic polypropylene. J. Phys. Chem. B 2017, 121, 6969–6978.

    Article  CAS  PubMed  Google Scholar 

  39. Sadler, D. M.; Barham, P. J. Structure of drawn fibers. 1. Neutron-scattering studies of necking in melt-crystallize prlyethylene. Polymer 1990, 31, 36–42.

    Article  CAS  Google Scholar 

  40. Men, Y. F.; Rieger, J.; Strobl, G. Role of the entangled amorphous network in tensile deformation of semicrystalline polymers. Phys. Rev. Lett. 2003, 91, 095502.

    Article  PubMed  CAS  Google Scholar 

  41. Aboulfaraj, M.; Gsell, C.; Ulrich, B.; Dahoun, A. In-situ observation of the plastic-deformation of polypropylene spherulites under uniaxial tension and simple shear in the scanning electron-microscope. Polymer 1995, 36, 731–742.

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21704102, U1832186, and 51525305), Newton Advanced Fellowship of the Royal Society, United Kingdom (No. NA150222) and ExxonMobil Asia Pacific Research & Development Co., Ltd. The authors acknowledge Dr. Ran Chen at Changchun Institute of Applied Chemistry who developed the MATLAB™ codes for data processing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ying Lu or Yong-Feng Men.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lyu, D., Sun, YY., Lai, YQ. et al. Advantage of Preserving Bi-orientation Structure of Isotactic Polypropylene through Die Drawing. Chin J Polym Sci 39, 91–101 (2021). https://doi.org/10.1007/s10118-020-2465-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2465-z

Keywords

Navigation